Advertisement

Biomedical Microdevices

, 17:40 | Cite as

Dry-contact microelectrode membranes for wireless detection of electrical phenotypes in neonatal mouse hearts

  • Yu Zhao
  • Hung Cao
  • Tyler Beebe
  • Hemin Zhang
  • Xiaoxiao Zhang
  • Honglong Chang
  • Oscar Scremin
  • Ching-Ling Lien
  • Yu-Chong Tai
  • Tzung K. HsiaiEmail author
Article

Abstract

Continuous monitoring of aberrant electrical rhythms during heart injury and repair requires prolonged data acquisition. We hereby developed a wearable microelectrode membrane that could be adherent to the chest of neonatal mice for in situ wireless recording of electrocardiogram (ECG) signals. The novel dry-contact membrane with a meshed parylene-C pad adjacent to the microelectrodes and the expandable meandrous strips allowed for varying size of the neonates. The performance was evaluated at the system level; specifically, the ECG signals (μV) acquired from the microelectrodes underwent two-stage amplification, band-pass filtering, and optical data transmission by an infrared Light Emitting Diode (LED) to the data-receiving unit. The circuitry was prototyped on a printed circuit board (PCB), consuming less than 300 μW, and was completely powered by an inductive coupling link. Distinct P waves, QRS complexes, and T waves of ECG signals were demonstrated from the non-pharmacologically sedated neonates at ~600 beats per minutes. Thus, we demonstrate the feasibility of both real-time and wireless monitoring cardiac rhythms in a neonatal mouse (17–20 mm and <1 g) via dry-contact microelectrode membrane; thus, providing a basis for diagnosing aberrant electrical conduction in animal models of cardiac injury and repair.

Keywords

Neonatal mice Wireless monitoring Dry-contact electrodes ECG Heart regeneration 

Notes

Acknowledgments

The studies were supported by the National Institutes of Health R01HL-083015 (T.K.H.), R01HD069305-01 (N.C.C., T.K.H.), R01HL111437 (T.K.H.), and R01HL096121(C.L.L.).

Supplementary material

10544_2014_9912_MOESM1_ESM.mp4 (105.6 mb)
Supplemental Video 1 Adult zebrafish are placed in a jacket with 4 electrodes proximal to the heart, similar to the neonatal mouse design in Fig 1. ECG signals are acquired by the electrode, and transmitted to the monitor where signals can be monitored in real-time. (MP4 108175 kb)

References

  1. O. Bergmann, R.D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh, J. Frisen, Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98–102 (2009). doi: 10.1126/science.1164680 CrossRefGoogle Scholar
  2. K. Bersell, S. Arab, B. Haring, B. Kuhn, Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2), 257–270 (2009). doi: 10.1016/j.cell.2009.04.060 CrossRefGoogle Scholar
  3. A.L. Bui, G.C. Fonarow, Home monitoring for heart failure management. J. Am. Coll. Cardiol. 59(2), 97–104 (2012)CrossRefGoogle Scholar
  4. H. Cao, S. Rao, S.-j. Tang, H.F. Tibbals, S. Spechler, J.-C. Chiao, Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest. Endosc. 77(4), 649–653 (2013)CrossRefGoogle Scholar
  5. H. Cao, F. Yu, Y. Zhao, X. Zhang, J. Tai, J. Lee . . . N. C. Chi. Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integr Biol (2014)Google Scholar
  6. Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)CrossRefGoogle Scholar
  7. P.C. Hsieh, V.F. Segers, M.E. Davis, C. MacGillivray, J. Gannon, J.D. Molkentin, R.T. Lee, Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13(8), 970–974 (2007). doi: 10.1038/nm1618 CrossRefGoogle Scholar
  8. G.N. Huang, J.E. Thatcher, J. McAnally, Y. Kong, X. Qi, W. Tan, J.A. Hill, C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338(6114), 1599–1603 (2012)CrossRefGoogle Scholar
  9. K. Kikuchi, J.E. Holdway, A.A. Werdich, R.M. Anderson, Y. Fang, G.F. Egnaczyk, K.D. Poss, Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288), 601–605 (2010)CrossRefGoogle Scholar
  10. S. Kulandavelu, D. Qu, N. Sunn, J. Mu, M.Y. Rennie, K.J. Whitelely … S.L. Adamson. Embryonic and neonatal phenotyping of genetically engineered mice. ILAR J. 47(2), 103–117 (2006). doi:  10.1093/ilar.47.2.s103
  11. C.L. Lien, M.R. Harrison, T.L. Tuan, V.A. Starnes, Heart repair and regeneration: recent insights from zebrafish studies. Wound Repair Regen. 20(5), 638–646 (2012)CrossRefGoogle Scholar
  12. J. Narula, N. Haider, R. Virmani, T.G. DiSalvo, F.D. Kolodgie, R.J. Hajjar, B.-A. Khaw, Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335(16), 1182–1189 (1996)CrossRefGoogle Scholar
  13. G. Olivetti, R. Abbi, F. Quaini, J. Kajstura, W. Cheng, J.A. Nitahara, S. Krajewski, Apoptosis in the failing human heart. N. Engl. J. Med. 336(16), 1131–1141 (1997)CrossRefGoogle Scholar
  14. E.R. Porrello, A.I. Mahmoud, E. Simpson, J.A. Hill, J.A. Richardson, E.N. Olson, H.A. Sadek, Transient regenerative potential of the neonatal mouse heart. Science 331(6020), 1078–1080 (2011)CrossRefGoogle Scholar
  15. P. Sun, Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu, T.K. Hsiai, Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 37(5), 890–901 (2009). doi: 10.1007/s10439-009-9668-3 CrossRefGoogle Scholar
  16. F. Yu, R. Li, E. Parks, W. Takabe, T.K. Hsiai, Electrocardiogram signals to assess zebrafish heart regeneration: implication of long QT intervals. Ann. Biomed. Eng. 38(7), 2346–2357 (2010). doi: 10.1007/s10439-010-9993-6 CrossRefGoogle Scholar
  17. F. Yu, Y. Zhao, J. Gu, K.L. Quigley, N.C. Chi, Y.-C. Tai, T.K. Hsiai, Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed. Microdevices 14(2), 357–366 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu Zhao
    • 1
  • Hung Cao
    • 2
  • Tyler Beebe
    • 3
  • Hemin Zhang
    • 4
  • Xiaoxiao Zhang
    • 1
  • Honglong Chang
    • 4
  • Oscar Scremin
    • 6
  • Ching-Ling Lien
    • 5
  • Yu-Chong Tai
    • 1
  • Tzung K. Hsiai
    • 2
    • 3
    • 6
    Email author
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.Division of Cardiology, Department of MedicineUCLA School of MedicineLos AngelesUSA
  3. 3.Department of BioengineeringUCLA School of Engineering & Applied SciencesLos AngelesUSA
  4. 4.Northwestern Polytechnical UniversityXi’anChina
  5. 5.Children Hospital Los AngelesLos AngelesUSA
  6. 6.Research ServicesVeteran Affairs Greater Los Angeles Healthcare SystemLos AngelesUSA

Personalised recommendations