Biomedical Microdevices

, 17:2 | Cite as

Multi-electrode array capable of supporting precisely patterned hippocampal neuronal networks

  • Tianyi Zhou
  • Susan F. Perry
  • Yevgeny Berdichevsky
  • Susanne Petryna
  • Vicki Fluck
  • Svetlana Tatic-Lucic


Accurate positioning of primary mouse hippocampal neurons on electrodes enables the recording from and stimulation of specified individual neurons on a multi-electrode array (MEA). In this work, positive dielectrophoresis (DEP) is applied to actively recruit hippocampal neurons to the electrodes of a MEA, whereas microstructures such as chambers and trenches are created to effectively define a patterned neuronal network. We present here the effective pretreatment methods, to improve cytocompatibility of cured thin SU-8 epoxy, commonly used in the fabrication of MEAs. The functionality of our novel MEA is proven by the successful recording of spontaneous and stimulated neuronal potentials from primary hippocampal neurons, including the propagation of evoked neuronal bursts between electrodes.


Multi-electrode array (MEA) Dielectrophoresis (DEP) Precise patterning SU-8 cytocompatibility Hippocampal neuronal network Neuronal recording 



This work was partially funded by National Science Foundation (NSF) grant NSF ECCS-1321356 and a grant to Lehigh University from the Howard Hughes Medical Institute (HHMI) through the Precollege and Undergraduate Science Education Program.

Supplementary material

10544_2014_9907_MOESM1_ESM.pdf (214 kb)
ESM 1 (PDF 213 kb)


  1. D.J. Bakkum, U. Grey, M. Radivojevic, T.L. Russell, J. Muller, M. Fiscella, H. Takahashi, Nat. Commun. 4, 2181 (2013)CrossRefGoogle Scholar
  2. L. Berdondini et al., Sens. Actuators. B. Chem 114(1), 530–541 (2006)CrossRefGoogle Scholar
  3. L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep, S. Martinoia, Lab. Chip. 9(18), 2644–2651 (2009)CrossRefGoogle Scholar
  4. T.J. Blanche, M.A. Spacek, J.F. Hetke, N.V. Swindale, J. Neurophysiol. 93(5), 2987–3000 (2005)CrossRefGoogle Scholar
  5. B.H. Brown, Med. Biol. Eng. 6(5), 493–502 (1968)CrossRefGoogle Scholar
  6. S.H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.B. Lee, G.A. Hughes, IEEE. Sens J 8(11), 1830–1836 (2008)CrossRefGoogle Scholar
  7. J. Erickson, A. Tooker, Y.C. Tai, J. Pine, J. Neurosci. Methods 175(1), 1–16 (2008)CrossRefGoogle Scholar
  8. D. Eytan, S. Marom, J. Neurosci. 26(33), 8465–8476 (2006)CrossRefGoogle Scholar
  9. U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Biosens. Bioelectron. 24(7), 2191–2198 (2009)CrossRefGoogle Scholar
  10. T. Gabay, E. Jakobs, E. Ben-Jakob, Y. Hanein, Physica. A 350(2–4), 611–621 (2005)CrossRefGoogle Scholar
  11. G. Gholmieh, W. Soussou, M. Han, A. Ahuja, M.C. Hsiao, D. Song, A.R. Tanguay Jr., T.W. Berger, J. Neurosci. Methods 152(1–2), 116–129 (2006)CrossRefGoogle Scholar
  12. M. Grattarola, S. Martinoia, IEEE. Trans. Biomed. Eng. 40(1), 35–41 (1993)CrossRefGoogle Scholar
  13. T. Heida, P. Vulto, W.L.C. Rutten, E. Marani, J. Neurosci. Methods 110(1–2), 37–44 (2001)CrossRefGoogle Scholar
  14. L.R. Hochberg et al., Nature 442, 164–171 (2006)CrossRefGoogle Scholar
  15. M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, P. Fromherz, J. Neurophysiol. 96(3), 1638–1645 (2006)CrossRefGoogle Scholar
  16. M.A.P. Idiart, L.F. Abbott, Network 4, 285–294 (1993)CrossRefzbMATHGoogle Scholar
  17. F.T. Jaber, F.H. Labeed, M.P. Hughes, J. Neurosci. Methods 182(2), 225–235 (2009)CrossRefGoogle Scholar
  18. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, H.P.C. Robinson, IEEE. Trans. Biomed. Eng. 50(2), 241–248 (2003)CrossRefGoogle Scholar
  19. G. Jing, A Multi-electrode Array (MEA) System for Patterned Neural Networks (Lehigh University, Bethlehem, 2009), pp. 167–178Google Scholar
  20. G. Jing, S.F. Perry, S. Tatic-Lucic, Biomed. Microdevices. 12(5), 935–948 (2010)CrossRefGoogle Scholar
  21. G. Jing, Y. Wang, T. Zhou, S.F. Perry, M.T. Grimes, S. Tatic-Lucic, Acta. Biomater. 7(3), 1094–1103 (2011)CrossRefGoogle Scholar
  22. T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, 1995), pp. 34–81CrossRefGoogle Scholar
  23. G. Liu, Y. Tian, Y. Kan, Microsyst. Technol. 11(4–5), 343–346 (2005)CrossRefGoogle Scholar
  24. J. Lu, C.C. Barrios, A.R. Dickson, J.L. Nourse, A.P. Lee, L.A. Flanagan, Integr. Biol. 4(10), 1223–1236 (2012)CrossRefGoogle Scholar
  25. M. Merz, P. Fromherz, Adv. Funct. Mater. 15(5), 739–744 (2005)CrossRefGoogle Scholar
  26. R. Miles, R.D. Traub, R.K. Wong, J. Neurophysiol. 60(4), 1481–1496 (1988)Google Scholar
  27. F.O. Morin, Y. Takamura, E. Tamiya, J. Biosci. Bioeng. 100(2), 131–143 (2005)CrossRefGoogle Scholar
  28. T. Ogura, T. Kubo, Y. Okuda, K. Lee, Y. Kira, S. Aramaki, F. Nakanishi, J. Orthop. Surg. 10(1), 67–71 (2002)Google Scholar
  29. L. Pan, S. Alagapan, E. Franca, G.J. Brewer, B.C. Wheeler, J. Neural Eng. 8(4), 046031 (2011)CrossRefGoogle Scholar
  30. J. Pine, J. Neurosci. Methods 2(1), 19–31 (1980)CrossRefGoogle Scholar
  31. H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge University Press, New York, 1978)Google Scholar
  32. S. Prasad, X. Zhang, M. Yang, Y. Ni, V. Parpura, C.S. Ozkan, M. Ozkan, J. Neurosci. Methods 135(1–2), 79–88 (2004)CrossRefGoogle Scholar
  33. J.T. Robinson, M. Jorgolli, A.K. Shalek, M.H. Yoon, R.S. Gertner, H. Park, Nat. Nanotech. 7(3), 180–184 (2012)CrossRefGoogle Scholar
  34. M.E. Spira, A. Hai, Nat. Nanotech. 8, 83–94 (2013)CrossRefGoogle Scholar
  35. J.L. Tan, W. Liu, C.M. Nelson, S. Raghavan, C.S. Chen, Tissue Eng. 10(5–6), 865–872 (2004)CrossRefGoogle Scholar
  36. S.L. Tao, K.C. Popat, J.J. Norman, T.A. Desai, Langmuir 24(6), 2631–2636 (2008)CrossRefGoogle Scholar
  37. A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2(8), 599–605 (2005)CrossRefGoogle Scholar
  38. W. Tonomura, R. Kitazawa, T. Ueyama, H. Okamura, S. Konishi, Proc. IEEE Conf. Sensors, Daegu, Korea, 140–143 (2006) doi:  10.1109/ICSENS.2007.355738
  39. V.N. Vernekar, D.K. Cullen, N. Fogleman, Y. Choi, A.J. Garcia, M.G. Allen, G.J. Brewer, M.C. LaPlaca, J. Biomed. Mater. Res. 89(1), 138–151 (2009)Google Scholar
  40. G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomater 24(11), 1959–1967 (2003)CrossRefGoogle Scholar
  41. D.A. Wagenaar, J. Pine, S.M. Potter, J. Neurosci. Methods 138(1–2), 27–37 (2004)CrossRefGoogle Scholar
  42. C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui, Y. Cui, Nano Lett. 10(10), 4020–4024 (2010)CrossRefGoogle Scholar
  43. G. Zeck, P. Fromherz, Proc. Natl. Acad. Sci. U. S. A. 98(18), 10457–10462 (2001)CrossRefGoogle Scholar
  44. H. Zhang, K.K. Liu, J. R. Soc. Interface 5(24), 671–690 (2008)CrossRefGoogle Scholar
  45. T. Zhou, S. Tatic-Lucic, Proc. IEEE Conf. Sensors, Taipei, Taiwan (2012) doi:  10.1109/ICSENS.2012.6411487

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tianyi Zhou
    • 1
    • 4
  • Susan F. Perry
    • 2
    • 3
  • Yevgeny Berdichevsky
    • 1
    • 2
  • Susanne Petryna
    • 2
  • Vicki Fluck
    • 2
  • Svetlana Tatic-Lucic
    • 1
    • 2
    • 4
  1. 1.Department of Electrical and Computer EngineeringLehigh UniversityBethlehemUSA
  2. 2.Bioengineering ProgramLehigh UniversityBethlehemUSA
  3. 3.Department of Chemical EngineeringLehigh UniversityBethlehemUSA
  4. 4.Lehigh UniversityBethlehemUSA

Personalised recommendations