Biomedical Microdevices

, Volume 16, Issue 6, pp 887–896 | Cite as

Microfluidic geometric metering-based multi-reagent mixture generator for robust live cell screening array



Microfluidic live cell arrays with integrated concentration gradient or mixture generators have been utilized in screening cellular responses to various biomolecular cues. Microfluidic network-based gradient generators that can create concentration gradients by repeatedly splitting and mixing different solutions using networks of serpentine channels are commonly used. However, in this method the generation of concentration gradients relies on the continuous flow of sample solutions at optimized flow rates, which poses challenges in maintaining the pressure and flow stability throughout the entire assay period. Here we present a microfluidic live cell screening array with an on-demand multi-reagent mixture generator where the mixing ratios, thus generated concentrations, are hard-wired into the chip itself through a geometric metering method. This platform showed significantly improved robustness and repeatability in generating concentration gradients of fluorescent dyes (average coefficient of variance C.V. = 9 %) compared to the conventional network-based gradient generators (average C.V. = 21 %). In studying the concentration dependent effects of the environmental toxicant 3-methylcholanthrene (3MC) on the activation of cytochrome P450 1A1 (Cyp 1A1) enzyme in H4IIE rat hepatoma cells, statistical variation of the Cyp 1A1 response was significantly lower (C.V. = 5 %) when using the developed mixture generator compared to that using the conventional gradient generator (C.V. = 12 %). Reduction in reagent consumption by 12-times was also achieved. This robust, accurate, and scalable multi-reagent mixture generator integrated with a cell culture array as a live cell assay platform can be readily implemented into various screening applications where repeatability, robustness, and low reagent consumptions over long periods of assay time are of importance.


Geometric metering Multi-reagent mixture generator Environmental toxicant Live cell screening 

Supplementary material

10544_2014_9893_MOESM1_ESM.pdf (319 kb)
ESM 1(PDF 318 kb)


  1. E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems, 2nd edn. (Cambridge University Press, New York, 1997)Google Scholar
  2. S.K.W. Dertinger, D.T. Chiu, N.L. Jeon, G.M. Whitesides, Anal. Chem. 73, 1240 (2001)CrossRefGoogle Scholar
  3. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403 (2006)CrossRefGoogle Scholar
  4. D.L. Englert, M.D. Manson, A. Jayaraman, Nat. Protoc. 5, 864 (2010)CrossRefGoogle Scholar
  5. J. Fu, J.J.B. Keurentjes, H. Bouwmeester, T. America, F.W.A. Verstappen, J.L. Ward, M.H. Beale, R.C.H. de Vos, M. Dijkstra, R.A. Scheltema, F. Johannes, M. Koornneef, D. Vreugdenhil, R. Breitling, R.C. Jansen, Nat. Genet. 41, 166 (2009)CrossRefGoogle Scholar
  6. C.L. Hansen, E. Skordalakes, J.M. Berger, S.R. Quake, Proc. Natl. Acad. Sci. U. S. A. 99, 16531 (2002)CrossRefGoogle Scholar
  7. Y.-H. Jang, M.J. Hancock, S.B. Kim, S. Selimovic, W.Y. Sim, H. Bae, A. Khademhosseini, Lab Chip 11, 3277 (2011)CrossRefGoogle Scholar
  8. N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, G.M. Whitesides, Langmuir 16, 8311 (2000)CrossRefGoogle Scholar
  9. T.M. Keenan, A. Folch, Lab Chip 8, 34 (2008)CrossRefGoogle Scholar
  10. J. Kim, M. Hegde, S.H. Kim, T.K. Wood, A. Jayaraman, Lab Chip 12, 1157 (2012a)CrossRefGoogle Scholar
  11. J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege, A. Jayaraman, Lab Chip 12, 1813 (2012b)CrossRefGoogle Scholar
  12. P.J. Lee, P.J. Hung, V.M. Rao, L.P. Lee, Biotechnol. Bioeng. 94, 5 (2006)CrossRefGoogle Scholar
  13. N.L. Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van De Water, M. Toner, Nat. Biotech. 20, 826 (2002)Google Scholar
  14. Y. Liu, T.M. Reineke, Bioconjug Chem. 18, 19 (2006)CrossRefGoogle Scholar
  15. J.S. Magyar, H.A. Godwin, Anal. Biochem. 320, 39 (2003)CrossRefGoogle Scholar
  16. S.R. Nagy, J.R. Sanborn, B.D. Hammock, M.S. Denison, Toxicol. Sci. 65, 200 (2002)CrossRefGoogle Scholar
  17. C. Neils, Z. Tyree, B. Finlayson, A. Folch, Lab Chip 4, 342 (2004)CrossRefGoogle Scholar
  18. P.R. Nott, J.F. Brady, J. Fluid Mech. 275, 157 (1994)CrossRefMATHGoogle Scholar
  19. J.P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, T. Thorsen, Lab Chip 6, 96 (2006)CrossRefGoogle Scholar
  20. Y. Wang, T. Mukherjee, Q. Lin, J. Micromech. Microeng. 16, 2128 (2006)CrossRefGoogle Scholar
  21. Q. Weilin, G. Mohiuddin Mala, L. Dongqing, Int. J. Heat Mass Tran. 43, 353 (2000)CrossRefMATHGoogle Scholar
  22. J. Wilson, G.H. Pigott, F.J. Schoen, L.L. Hench, J. Biomed. Mater. Res. 15, 805 (1981)CrossRefGoogle Scholar
  23. N. Ye, J. Qin, W. Shi, X. Liu, B. Lin, Lab Chip 7, 1696 (2007)CrossRefGoogle Scholar
  24. E.W.K. Young, D.J. Beebe, Chem. Soc. Rev. 39, 1036 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Han Wang
    • 1
  • Jeongyun Kim
    • 2
  • Arul Jayaraman
    • 3
    • 4
  • Arum Han
    • 1
    • 4
  1. 1.Department of Electrical and Computer EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Nanobiomedical Science and WCU Research CentreDankook University Graduate SchoolCheonanRepublic of Korea
  3. 3.Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA
  4. 4.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations