Skip to main content
Log in

Design study of a Miniaturized Displacement Transducer (MDT) for an active middle ear implant system

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

People suffering from moderate to severe hearing loss can be treated with active middle ear implants. A new approach in this field is to implant an electromechanical transducer onto the round window membrane in order to improve coupling and be able to treat patients with middle-ear problems. In this paper the design study for a miniaturized displacement transducer (MDT) for the round window is presented. Based on a requirement analysis, the basic principle and analytical modeling of the actuator is shown. A parameter variation study results in an optimized actuator configuration that is able to generate an amplification of 110 dB SPL theoretically. As a next step this actuator has to be manufactured and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • R. Aibara, J.T. Welsh, S. Puria, R.L. Goode, Human middle-ear sound transfer function and cochlear input impedance. Hear. Res. 152 (1–2), 100–109 (2001)

    Article  Google Scholar 

  • G.v. Békésy, Experiments in hearing (McGraw-Hill, New York, 1960)

    Google Scholar 

  • W. Chien, J.J. Rosowski, M.E. Ravicz, S.D. Rauch, J. Smullen, S.N. Merchant, Measurements of stapes velocity in live human ears. Hear. Res. 249 (1–2), 54–61 (2009)

    Article  Google Scholar 

  • V. Colletti, S.D. Soli, M. Carner, L. Colletti, Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int. J. Audiol. 45 (10), 600–608 (2006)

    Article  Google Scholar 

  • K.J. Dormer, R.Z. Gan, Biomaterials for implantable middle ear hearing devices. Otolaryngol. Clin. N. Am. 34 (2), 289–297 (2001)

    Article  Google Scholar 

  • K. Green, The role of active middle-ear implants in the rehabilitation of hearing loss. Expert. Rev. Med. Devices. 8 (4), 441–447 (2011)

    Article  Google Scholar 

  • E. Goll, E. Dalhoff, A.W. Gummer, A. Heyd, D. Wildenstein, H. Arnold, S.P. Schraven, D. Kaltenbacher, J. SchÃchtele, A. SchÃfer, C. Burkhardt, K. Tavakoli, U. Brenk, A. Pojtinger, U. Remer, T. Wesendahl, M. Winter, H.-.P Zenner, Concept and evaluation of an endaurally insertable middle-ear implant. Med. Eng. Phys. 35, 532–536 (2013)

    Article  Google Scholar 

  • K.-B. Hüttenbrink, D. Beutner, M. Bornitz, J.C. Luers, T. Zahnert, Clip vibroplasty. Otol. & Neurotology. 32 (4), 650–653 (2011)

    Article  Google Scholar 

  • D. Kaltenbacher, J. Schächtele, A. Schäfer, E. Goll, H. Zenner, Implantierbarer piezoelektrischer Aktor für ein Hörimplantat. Biomed. Tech. 55 (1), 1 (2010)

    Article  Google Scholar 

  • M. Kohl, Shape memory microactuators (Springer, Berlin, 2004)

    Book  Google Scholar 

  • M. Kringlebotn, T. Gundersen, Frequency characteristics of the middle ear. J. Acoust. Soc. Am. 77 (1), 159–164 (1985)

    Article  Google Scholar 

  • J.P. d La Cruz, E. Joanni, P.M. Vilarinho, A.L. Kholkin, Thickness effect on the dielectric, ferroelectric, and piezoelectric properties of ferroelectric lead zirconate titanate thin films. J. Appl. Phys. 108 (11), 114106–8 (2010)

    Article  Google Scholar 

  • J.E. Lupo, K. Koka, B.J. Hyde, H.A. Jenkins, D.J. Tollin, Physiological assessment of active middle ear implant coupling to the round window in chinchilla lanigera. Otolaryngol. Head Neck Surg. 145 (4), 641–647 (2011)

    Article  Google Scholar 

  • J. Maurer, E. Savvas, in The esteem system: a totally implantable hearing device, ed. by K. Böheim. Advances in oto-rhino-laryngology (KARGER, Basel, 2010), pp. 59–71

    Google Scholar 

  • S.N. Merchant, M.E. Ravicz, J.J. Rosowski, Acoustic input impedance of the stapes and cochlea in human temporal bones. Hear. Res. 97 (1–2), 30–45 (1996)

    Article  Google Scholar 

  • P. Muralt, A. Kholkin, M. Kohli, T. Maeder, Piezoelectric actuation of pzt thin-film diaphragms at static and resonant conditions. Sensors Actuators A. Phys. 53 (1–3), 398–404 (1996)

    Article  Google Scholar 

  • H. Nakajima, W. Dong, E. Olson, S. Merchant, M. Ravicz, J. Rosowski, Differential intracochlear sound pressure measurements in normal human temporal bones. JARO - J. Assoc. Res. Otolaryngol. 10 (1), 23–36 (2009)

    Article  Google Scholar 

  • H.H. Nakajima, S.N. Merchant, J.J. Rosowski, Performance considerations of prosthetic actuators for round-window stimulation. Hear. Res. 263 (1–2), 114–119 (2010)

    Article  Google Scholar 

  • A. Neumann, K. Jahnke, Biomaterials for ossicular chain reconstruction. A review. Mater. Werkst. 34 (12), 1052–1057 (2003)

    Article  Google Scholar 

  • H. Okuno, I. Sando, Anatomy of the round window. A histopathological study with a graphic reconstruction method. Acta Otolaryngol. 106 (1–2), 55–63 (1988)

    Article  Google Scholar 

  • K. Prume, P. Muralt, F. Calame, T. Schmitz-Kempen, S. Tiedke, Piezoelectric thin films: evaluation of electrical and electromechanical characteristics for mems devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54 (1), 8–14 (2007)

    Article  Google Scholar 

  • P.S. Roland, C.G. Wright, B. Isaacson, Cochlear implant electrode insertion: the round window revisited. Laryngoscope. 117 (8), 1397–1402 (2007)

    Article  Google Scholar 

  • N. Sama, C. Soyer, D. Remiens, C. Verrue, R. Bouregba, Bottom and top electrodes nature and pzt film thickness influence on electrical properties. Sensors Actuators A Phys. 158 (1), 99–105 (2010)

    Article  Google Scholar 

  • B. Sivasankar, Engineering chemistry (Tata McGraw-Hill, New Delhi, 2008)

    Google Scholar 

  • S. Stenfelt, N. Hato, R.L. Goode, Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J. Acoust. Soc. Am. 115 (2), 797–812 (2004)

    Article  Google Scholar 

  • J. Schächtele, E. Goll, P. Muralt, D. Kaltenbacher, Admittance matrix of a trapezoidal piezoelectric heterogeneous bimorph. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59 (12), 2765– 2776 (2012)

    Article  Google Scholar 

  • S.P. Schraven, B. Hirt, E. Goll, A. Heyd, A.W. Gummer, H.-P. Zenner, E. Dalhoff, Conditions for highly efficient and reproducible round-window stimulation in humans. Audiol. Neurotology. 17 (2), 133–138 (2012)

    Article  Google Scholar 

  • S.P. Schraven, B. Hirt, A.W. Gummer, H.-P. Zenner, E. Dalhoff, Controlled round-window stimulation in human temporal bones yielding reproducible and functionally relevant stapedial responses. Hear. Res. 282 (1–2), 272–282 (2011)

    Article  Google Scholar 

  • T.J. Stewart, A. Belal, Surgical anatomy and pathology of the round window. Clin. Otolaryngol. 6 (1), 45–62 (1981)

    Article  Google Scholar 

  • F. Wagner, I. Todt, J. Wagner, A. Ernst, in Indications and candidacy for active middle ear implants, ed. by K. Böheim. Advances in oto-rhino-laryngology (KARGER, Basel, 2010), pp. 20– 26

    Google Scholar 

  • M. Weinmann, J. Huck, W. Nisch, A. Stett, G. Urban, V. Bucher, in Jahrbuch Oberflächentechnik 2012, Vol. 68, ed. by R. Suchentrunk. Flexible Verkapselungsschichten für elektrisch aktive Mikroimplantate (Eugen G. Leuze Verlag, Bad Saulgau, 2012)

  • A. Wolf-Magele, J. Schnabl, T. Woellner, V. Koci, H. Riechelmann, G.M. Sprinzl, Active middle ear implantation in elderly people. Otol. & Neurotology. 32 (5), 805–811 (2011)

    Article  Google Scholar 

  • H.P. Zenner, H. Leysieffer, Totally implantable hearing device for sensorineural hearing loss. The Lancet. 352 (9142), 1751 (1998)

    Article  Google Scholar 

  • H.P. Zenner, H. Leysieffer, Total implantation of the implex tica hearing amplifier implant for high-frequency sensorineural hearing loss. Otolaryngol. Clin. N. Am. 34 (2), 417–446 (2001)

    Article  Google Scholar 

  • H. Zenner, J.J. Rodriguez, in Totally implantable active middle ear implants: ten years’ experience at the university of tübingen, ed. by K. Böheim. Advances in oto-rhino-laryngology (KARGER, Basel, 2010), pp. 72–84

    Google Scholar 

Download references

Acknowledgment

Support from the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kaltenbacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltenbacher, D., Schächtele, J., Goll, E. et al. Design study of a Miniaturized Displacement Transducer (MDT) for an active middle ear implant system. Biomed Microdevices 16, 805–814 (2014). https://doi.org/10.1007/s10544-014-9884-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9884-y

Keywords

Navigation