Skip to main content

Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies

Abstract

The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.

This is a preview of subscription content, access via your institution.

Fig 1
Fig 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • E.S. Place, N. Evans, M. Stevens, Complexity in biomaterials for tissue engineering. Nat. Mater. 8, 457–469 (2009)

    Article  Google Scholar 

  • A. Ponche, M. Bigerelle, K. Anselme, Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 1: Physico-chemical effects. Proc. IME. J. Eng. Med. 224(12), 1471–1486 (2010)

    Article  Google Scholar 

  • K. Anselme, A. Ponche, M. Bigerelle, Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 2: Biological aspects. Proc. IME. J. Eng. Med. 224(12), 1487–1507 (2010)

    Article  Google Scholar 

  • I.S. Reljin, B.D. Reljin, Fractal geometry and multifractals in analyzing and processing medical data and images. Arch. Oncol. 10(4), 283–293 (2002)

    Article  Google Scholar 

  • H. Hosseinkhani, M. Hosseinkhani, S. Hattori, R. Matsuoka, N. Kawaguchi, Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J. Biomed. Mater. Res. A 94(1), 1–8 (2010)

    Article  Google Scholar 

  • H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi, Y. Tabata, Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng. 13(1), 11–19 (2007)

    Article  Google Scholar 

  • Borchers K, Bierwisch C, Cousteau J, Engelhard S, Graf C, Jaeger R, Klechowitz N, Kluger P, Krueger H, Meyer W, Novosel E, Refle O, Schuh C, Seiler N, Tovar G, Wegener M, Ziegler T. New cytocompatible materials for additive manufacturing of bio-inspired blood vessels systems. International Conference on Biofabrication 2012.

  • J. Archard, Surface topography and tribology. Tribology 7(5), 213–220 (1974)

    Article  Google Scholar 

  • B. Bushan, J. Israelachvili, U. Landman, Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607–616 (1995)

    Article  Google Scholar 

  • W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  • A. Buxboim, D.E. Discher, Stem cells feel the difference. Nat. Methods 7(9), 695–697 (2010)

    Article  Google Scholar 

  • M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, B. Rech, The effect of front ZnO:Al surface texture and optical transparencyon efficient light trapping in silicon thin-film solar cells. J. Appl. Phys. 101, 074903 (2007)

    Article  Google Scholar 

  • V. Briones, J.M. Aguilera, C. Brown, The effect of surface topography on color and gloss of chocolate samples. J. Food Eng. 77(4), 776–783 (2006)

    Article  Google Scholar 

  • M.J. Madou, Fundamentals of microfabrication: The Science of miniaturization, 2nd edn. (CRC Press, New York, 2002)

    Google Scholar 

  • Chandra P, Lai K, Sunj HJ, Murthy NS, Kohn J. UV laser-ablated surface textures as potential regulator of cellular response. Biointerphases, 5 (2), 53–59, (2010)

  • C.R. Martin, I.A. Aksay, Microchannel molding: A soft lithography-inspired approachto micrometer-scale patterning. J. Mater. Res. 20(8), 1995–2003 (2005)

    Article  Google Scholar 

  • D.P. Pulsifier, A. Lakhtakia, Background and survey of bioreplication techniques. Bioinspir. Biomim 6(3), 031001 (2011)

    Article  Google Scholar 

  • W. Kwasny, Predicting properties of PVD and CVD coatings based on fractal quantitiesdescribing their surface. J. Achiev. Mater. Manuf. Eng 37(2), 125–192 (2009)

    Google Scholar 

  • S.S. Jedlicka, J.L. McKenzie, S.L. Leavesley, K.M. Little, T.J. Webster, J.P. Robinson, D.E. Nivens, J.L. Rickus, Sol–gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation. J. Mater. Chem. 16(31), 3221–3230 (2007)

    Article  Google Scholar 

  • Y. Rahmawan, L. Xu, S. Yang, Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A 1(9), 2955–2969 (2013)

    Article  Google Scholar 

  • M. Gad-el-Hak, The MEMS Handbook (CRC Press, New York, 2003)

    Google Scholar 

  • V.M. Naik, R. Mukherjee, A. Majumder, A. Sharma, Super functional materials: Creation and controlof wettability, adhesion and optical effectsby meso-texturing of surfaces. Curr. Trends. Sci. (129–148) (2009). Platinum Jubilee Special

  • H. Fan, Y. Lu, A. Stump, S.T. Reed, T. Baer, R. Schunk, V. Perez-Luna, G.P. López, J. Brinker, Nature 405, 56–60 (2000)

    Article  Google Scholar 

  • B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982a)

    MATH  Google Scholar 

  • Falconer K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Ltd., 2003.

  • T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener, Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24, 2710–2714 (2012)

    Article  Google Scholar 

  • M. Röhrig, M. Thiel, M. Worgull, H. Hölscher, Hierarchical structures: 3D direct laser writing of nano-microstructured hierarchical gecko-mimicking surface. Small 8(19), 3009–3015 (2012)

    Article  Google Scholar 

  • Díaz Lantada A. Handbook on advanced design and manufacturing technologies for biomedical devices. Springer, 2013

  • A. Díaz Lantada, J.L. Endrino, A.A. Mosquera, P. Lafont, Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. J. Phys. Conf. Ser. 252(1), 012003 (2010)

    Article  Google Scholar 

  • B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982b)

    MATH  Google Scholar 

  • Falconer K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons Ltd., 2003.

  • A. Díaz Lantada, J. Endrino, V. Sánchez-Vaquero, A.A. Mosquera, P. Lafont Morgado, J.P. García Ruíz, Tissue engineering using novel DLC-coated rapid prototyped scaffolds. Plasma. Processes. Polym. 9(1), 98–107 (2011)

    Article  Google Scholar 

  • H. Lipson, Frontiers in additive manufacturing, the shape of things to come. The Bridge 42(1), 5–12 (2012)

    Google Scholar 

  • White R. SU-8 Photoresist processing: Standard operating procedure. (Online), January, 19, 2012.

  • A. Ostendorf, B.N. Chichkov, Two-photon polymerization: A new approach to micromachining. Photonics. Spectr. (October) (2006)

  • M. Hermatsweiler, Laserlithografie als Innovationstreiber für Schlüsseltechnologien. Laser. Technik. J. (September) (2013)

  • J.J. Norman, S.O. Choi, N.T. Tong, A.R. Aiyar, S.R. Patel, M.R. Prausnitz, M.G. Allen, Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed. Microdevices 15(2), 203–210 (2013)

    Article  Google Scholar 

  • D. Simon, T. Ware, R. Marcotte, B.R. Lund, D.W. Smith, M. Di Prima, R.L. Rennaker, W. Voit, A comparison of polymer substrates for photolithographic processing of flexible bioelectronics. Biomed. Microdevices 15(6), 925–939 (2013)

    Article  Google Scholar 

  • F. Klein, T. Striebel, Z. Jiang, C.M. Franz, G. Von Freymann, M. Bastmeyer, Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv. Mater. 22, 868–871 (2010)

    Article  Google Scholar 

  • A. Díaz Lantada, B. Pareja Sánchez, C. Gómez Murillo, J. Urbieta Sotillo, Fractals in tissue engineering: Towards biomimetic cell-culture matrices, microsystems and microstructured implants. Expert. Rev. Med. Devices. 10(5), 629–648 (2013)

    Article  Google Scholar 

  • Huang TQ, Qu X, Liu J, Chen S. 3D printing of biomimetic microstructures for cancer cell migration. Biomedical Microdevices, DOI 10.1007/s10544-013-9812-6, (Online), October, 29, 2013.

Download references

Acknowledgements

This work was carried out with the support of the European Community. We appreciate the support of the European Research Infrastructure EUMINAfab (funded under the FP7 specific programme Capacities, Grant Agreement Number 226460) and its partner, the Karlsruhe Institute of Technology. We are also grateful to Dr. Dieter Maas and to Dr. Thomas Schaller for their kind help and for their support of the EUMINAfab 1140 proposal. We acknowledge reviewers for their positive opinions, encouraging commments and proposals for improvement, which have helped to enhance paper quality, readability, content and final result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hengsbach, S., Lantada, A.D. Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16, 617–627 (2014). https://doi.org/10.1007/s10544-014-9864-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9864-2

Keywords

  • Fractals
  • Surface topography
  • Material texture
  • Materials design
  • Computer-aided design
  • Additive manufacturing
  • Direct laser writing