Skip to main content
Log in

Microcavity substrates casted from self-assembled microsphere monolayers for spheroid cell culture

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Multicellular spheroids are an important 3-dimensional cell culture model that reflects many key aspects of in vivo microenvironments. This paper presents a scalable, self-assembly based approach for fabricating microcavity substrates for multicellular spheroid cell culture. Hydrophobic glass microbeads were self-assembled into a tightly packed monolayer through the combined actions of surface tension, gravity, and lateral capillary forces at the water-air interface of a polymer solution. The packed bead monolayer was subsequently embedded in the dried polymer layer. The surface was used as a template for replicating microcavity substrates with perfect spherical shapes. We demonstrated the use of the substrate in monitoring the formation process of tumor spheroids, a proof-of-concept scale-up fabrication procedure into standard microplate formats, and its application in testing cancer drug responses in the context of bone marrow stromal cells. The presented technique offers a simple and effective way of forming high-density uniformly-sized spheroids without microfabrication equipment for biological and drug screening applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • M. Arnold, E.A. Cavalcanti-Adam, R. Glass, J. Blümmel, W. Eck, M. Kantlehner, H. Kessler, J.P. Spatz, ChemPhysChem 5, 383–388 (2004)

    Article  Google Scholar 

  • T.J. Bartosh, J.H. Ylostalo, A. Mohammadipoor, N. Bazhanov, K. Coble, K. Claypool, R.H. Lee, H. Choi, D.J. Prockop, Proc. Natl. Acad. Sci. U. S. A. 107, 13724–13729 (2010)

    Article  Google Scholar 

  • B.J. Battersby, M. Trau, Trends Biotechnol. 20, 167–173 (2002)

    Article  Google Scholar 

  • N.P. Boks, W. Norde, H.C. van der Mei, H.J. Busscher, Microbiology 154, 3122–3133 (2008)

    Article  Google Scholar 

  • N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233–235 (1997)

    Article  Google Scholar 

  • Y.Y. Choi, B.G. Chung, D.H. Lee, A. Khademhosseini, J.-H. Kim, S.-H. Lee, Biomaterials 31, 4296–4303 (2010)

    Article  Google Scholar 

  • T.D. Clark, J. Tien, D.C. Duffy, K.E. Paul, G.M. Whitesides, J. Am. Chem. Soc. 123, 7677–7682 (2001)

    Article  Google Scholar 

  • J.G. Fernandez, A. Khademhosseini, Adv. Mater. 22, 2538–2541 (2010)

    Article  Google Scholar 

  • J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Nat. Protoc. 4, 309–324 (2009)

    Article  Google Scholar 

  • R. Glass, M. Moller, J.P. Spatz, Nanotechnology 14, 1153–1160 (2003)

    Article  Google Scholar 

  • H. Hardelauf, J.-P. Frimat, J.D. Stewart, W. Schormann, Y.-Y. Chiang, P. Lampen, J. Franzke, J.G. Hengstler, C. Cadenas, L.A. Kunz-Schughart, J. West, Lab Chip 11, 419–428 (2011)

    Article  Google Scholar 

  • F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, J. Biotechnol. 148, 3–15 (2010)

    Article  Google Scholar 

  • T.A. Ince, A.L. Richardson, G.W. Bell, M. Saitoh, S. Godar, A.E. Karnoub, J.D. Iglehart, R.A. Weinberg, Cancer Cell 12, 160–170 (2007)

    Article  Google Scholar 

  • A. Ivascu, M. Kubbies, J. Biomol. Screen. 11, 922–932 (2006)

    Article  Google Scholar 

  • H.-J. Jin, Y.-H. Cho, J.-M. Gu, J. Kim, Y.-S. Oh, Lab Chip 11, 115–119 (2011)

    Article  Google Scholar 

  • B. Johnstone, T.M. Hering, A.I. Caplan, V.M. Goldberg, J.U. Yoo, Exp. Cell Res. 238, 265–272 (1998)

    Article  Google Scholar 

  • J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.-Y. Suh, J. Cheng, A. Mahdavi, J. Borenstein, R. Langer, A. Khademhosseini, Lab Chip 7, 786–794 (2007)

    Article  Google Scholar 

  • J.M. Kelm, M. Fussenegger, Trends Biotechnol. 22, 195–202 (2004)

    Article  Google Scholar 

  • J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Biotechnol. Bioeng. 83, 173–180 (2003)

    Article  Google Scholar 

  • A. Khademhosseini, G. Eng, J. Yeh, J. Fukuda, J. Blumling, R. Langer, J.A. Burdick, J. Biomed. Mater. Res. A 79A, 522–532 (2006)

    Article  Google Scholar 

  • C. Kim, J.H. Bang, Y.E. Kim, S.H. Lee, J.Y. Kang, Lab Chip 12, 4135–4142 (2012)

    Article  Google Scholar 

  • Klo, M. Fischer, A. Rothermel, J.C. Simon, A.A. Robitzki, Lab Chip 8, 879–884 (2008)

    Article  Google Scholar 

  • P.A. Kralchevsky, K. Nagayama, Langmuir 10, 23–36 (1994)

    Article  Google Scholar 

  • Z. Love, F. Wang, J. Dennis, A. Awadallah, N. Salem, Y. Lin, A. Weisenberger, S. Majewski, S. Gerson, Z. Lee, J. Nucl. Med. 48, 2011–2020 (2007)

    Article  Google Scholar 

  • J. Major, J. Biomol. Screen. 3, 13–17 (1998)

    Article  Google Scholar 

  • D.W. McMillin, J. Delmore, E. Weisberg, J.M. Negri, D.C. Geer, S. Klippel, N. Mitsiades, R.L. Schlossman, N.C. Munshi, A.L. Kung, J.D. Griffin, P.G. Richardson, K.C. Anderson, C.S. Mitsiades, Nat. Med. 16, 483–489 (2010)

    Article  Google Scholar 

  • A.P. Napolitano, D.M. Dean, A.J. Man, J. Youssef, D.N. Ho, A.P. Rago, M.P. Lech, J.R. Morgan, Biotechniques 43(494), 496–500 (2007)

    Google Scholar 

  • F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007)

    Article  Google Scholar 

  • B. Parekkadan, D. van Poll, K. Suganuma, E.A. Carter, F. Berthiaume, A.W. Tilles, M.L. Yarmush, PLoS ONE 2, e941 (2007)

    Article  Google Scholar 

  • J.Y. Park, D.H. Lee, E.J. Lee, S.-H. Lee, Lab Chip 9, 2043–2049 (2009)

    Article  Google Scholar 

  • D. Philp, J.F. Stoddart, Angew. Chem. Int. Ed. 35, 1154–1196 (1996)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24, 3563–3576 (2003)

    Article  Google Scholar 

  • N.J. Sniadecki, C.S. Chen, Methods Cell Biol. 83, 313–328 (2007)

    Article  Google Scholar 

  • K. Subramanian, D.J. Owens, R. Raju, M. Firpo, T.D. O’Brien, C.M. Verfaillie, W.S. Hu, Stem Cells Dev. 23, 124–131 (2014)

    Article  Google Scholar 

  • R.M. Sutherland, J.A. McCredie, W.R. Inch, J. Natl. Cancer Inst. 46, 113–120 (1971)

    Google Scholar 

  • T. Tamura, Y. Sakai, K. Nakazawa, J. Mater. Sci. Mater. Med. 19, 2071–2077 (2008)

    Article  Google Scholar 

  • Y.-s. Torisawa, A. Takagi, Y. Nashimoto, T. Yasukawa, H. Shiku, T. Matsue, Biomaterials 28, 559–566 (2007)

    Article  Google Scholar 

  • M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, PLoS ONE 3, e1565 (2008)

    Article  Google Scholar 

  • S.F. Wong, D.Y. No, Y.Y. Choi, D.S. Kim, B.G. Chung, S.-H. Lee, Biomaterials 32, 8087–8096 (2011)

    Article  Google Scholar 

  • M. Yamaki, J. Higo, K. Nagayama, Langmuir 11, 2975–2978 (1995)

    Article  Google Scholar 

  • J.M. Yuhas, A.P. Li, A.O. Martinez, A.J. Ladman, Cancer Res. 37, 3639–3643 (1977)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Robert A. Weinberg for the HMLER cells, and Peter Waterman for assistance with in vitro bioluminescence imaging. This work was supported in part by National Institutes of Health Grants R01EB012521 (B.P.) and K01DK087770 (B.P.), and also by Massachusetts General Hospital Fund for Medical Discovery 2011A053483 (K.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biju Parekkadan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Lee, J., Yarmush, M.L. et al. Microcavity substrates casted from self-assembled microsphere monolayers for spheroid cell culture. Biomed Microdevices 16, 609–615 (2014). https://doi.org/10.1007/s10544-014-9863-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9863-3

Keywords

Navigation