Skip to main content

Advertisement

Log in

A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, a new microelectrode assembly based on spiral geometry applicable to in situ electroporation of adherent cell monolayers on standard multiwell plates is presented. Furthermore, the structure is specially conceived to perform electrical impedance spectroscopy (EIS) measurements during electroporation. Its performance for cell membrane permeabilization is tested with a fluorescent probe. Gene electrotransfer is also assayed using a plasmid DNA encoding GFP in four different cell lines (CHO, HEK293, 3T3-L1 and FTO2B). Additionally, siRNA α-GFP electrotransfection is tested in GFP gene-expressing CHO cells. Our data show considerable differences between permeabilization and gene transfer results and cell line dependence on gene expression rates. Successful siRNA electro-mediated delivery is also achieved. We demonstrate the applicability of our device for electroporation-mediated gene transfer of adherent cells in standard laboratory conditions. Finally, electrical impedance measurements during electroporation of CHO and 3T3-L1 cells are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • F. Andre, L.M. Mir, DNA electrotransfer: its principles and an updated review of its therapeutic applications. Gene Ther. 11(Suppl 1), S33–S42 (2004)

    Article  Google Scholar 

  • A.M. Bodles-Brakhop, R. Heller, R. Draghia-Akli, Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Mol. Ther. 17, 585–592 (2009)

    Article  Google Scholar 

  • D. Bumcrot, M. Manoharan, V. Koteliansky, D. Sah, RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat. Chem. Biol. 2, 711–719 (2006)

    Article  Google Scholar 

  • U. Cegovnik, S. Novakovic, Setting optimal parameters for in vitro electrotransfection of B16F1, SA1, LPB, SCK, L929 and CHO cells using predefined exponentially decaying electric pulses. Bioelectrochemistry 62, 73–82 (2004)

    Article  Google Scholar 

  • K. Cepurniene, P. Ruzgys, R. Treinys, I. Satkauskiene, S. Satkauskas, Influence of plasmid concentration on DNA electrotransfer in vitro using high-voltage and low-voltage pulses. J. Membr. Biol. 236, 81–85 (2010)

    Article  Google Scholar 

  • R.V. Davalos, D.M. Otten, L.M. Mir, B. Rubinsky, Electrical impedance tomography for imaging tissue electroporation. IEEE Trans. Biomed. Eng. 51, 761–767 (2004)

    Article  Google Scholar 

  • A. de Fougerolles, H.P. Vornlocher, J. Maraganore, J. Lieberman, Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453 (2007)

    Article  Google Scholar 

  • E. De Vuyst, M. De Bock, E. Decrock, M. Van Moorhem, C. Naus, C. Mabilde et al., In situ bipolar electroporation for localized cell loading with reporter dyes and investigating gap junctional coupling. Biophys. J. 94, 469–479 (2008)

    Article  Google Scholar 

  • J.M. Escoffre, T. Portet, L. Wasungu, J. Teissie, D. Dean, M.P. Rols, What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues. Mol. Biotechnol. 41, 286–295 (2009)

    Article  Google Scholar 

  • C. Faurie, M. Rebersek, M. Golzio, M. Kanduser, J.M. Escoffre, M. Pavlin et al., Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J. Gen. Med. 12, 117–125 (2010)

    Article  Google Scholar 

  • Y. Fedorov, A. King, E. Anderson, J. Karpilow, D. Ilsley, W. Marshall et al., Different delivery methods-different expression profiles. Nat. Methods 2, 241–41 (2005)

    Article  Google Scholar 

  • K.R. Foster, H.P. Schwan, Dielectric properties of tissues—a review, in Handbook of biological effects of electro-magnetic radiation, ed. by C.P.E. Postow, 2nd edn. (CRC Press, Boca Raton, 1995), pp. 25–102

    Google Scholar 

  • C. García-Martínez, M. Marotta, R. Moore-Carrasco, M. Guitart, M. Camps, S. Busquets et al., Impact on fatty acid metabolism and differential localization of FATP1 and FAT/CD36 proteins delivered in cultured human muscle cells. Am. J. Physiol. Cell Physiol. 288, C1264–C1272 (2005)

    Article  Google Scholar 

  • T. Garcia-Sanchez, M. Guitart, J. Rosell, A. MaGomez-Foix, R. Bragos, in Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. Automatic System for Electroporation of Adherent Cells Growing in Standard Multi-Well Plates, vol. pp. 2571–2574, (2012a).

  • T. Garcia-Sanchez, B. Sanchez-Ortiz, I. Vila, M. Guitart, J. Rosell, A. Gomez-Foix et al., Design and implementation of a microelectrode assembly for use on noncontact in situ electroporation of adherent cells. J. Membr. Biol. 245, 617–624 (2012b)

    Article  Google Scholar 

  • M. Golzio, J. Teissié, M.P. Rols, Direct visualization at the single-cell level of electrically mediated gene delivery. Proc. Natl. Acad. Sci. 99, 1292–1297 (2002)

    Article  Google Scholar 

  • T.R. Gowrishankar, J.C. Weaver, An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. 100, 3203–3208 (2003)

    Article  Google Scholar 

  • S. Haberl, M. Kandušer, K. Flisar, D. Hodžić, V.B. Bregar, D. Miklavčič et al., Effect of different parameters used for in vitro gene electrotransfer on gene expression efficiency, cell viability and visualization of plasmid DNA at the membrane level. J. Gen. Med. 15, 169–181 (2013)

    Article  Google Scholar 

  • H. He, D.C. Chang, Y.K. Lee, Nonlinear current response of micro electroporation and resealing dynamics for human cancer cells. Bioelectrochemistry 72, 161–168 (2008)

    Article  Google Scholar 

  • H.L. Huang, H.W. Hsing, T.C. Lai, Y.W. Chen, T.R. Lee, H.T. Chan et al., Trypsin-induced proteome alteration during cell subculture in mammalian cells. J. Biomed. Sci. 17, 36 (2010)

    Article  Google Scholar 

  • H. Huang, Z. Wei, Y. Huang, D. Zhao, L. Zheng, T. Cai et al., An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip 11, 163–172 (2011)

    Article  Google Scholar 

  • A. Ivorra, Tissue Electroporation as a Bioelectric Phenomenon: Basic Concepts, in Irreversible Electroporation, ed. by Rubinsky B, (Springer Berlin Heidelberg, 2010), pp. 23–61

  • A. Ivorra, B. Al-Sakere, B. Rubinsky, L.M. Mir, In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys. Med. Biol. 54, 5949–5963 (2009)

    Article  Google Scholar 

  • J. Wegener, C.R. Keese, I. Giaever, Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques 33, 348, 50, 52 passim (2002)

    Google Scholar 

  • M. Kanduser, D. Miklavcic, M. Pavlin, Mechanisms involved in gene electrotransfer using high- and low-voltage pulses—an in vitro study. Bioelectrochemistry 74, 265–271 (2009)

    Article  Google Scholar 

  • C. Kanthou, S. Kranjc, G. Sersa, G. Tozer, A. Zupanic, M. Cemazar, The endothelial cytoskeleton as a target of electroporation-based therapies. Mol. Cancer Ther. 5, 3145–3152 (2006)

    Article  Google Scholar 

  • K. Kinosita, T.Y. Tsong, Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268, 438–441 (1977)

    Article  Google Scholar 

  • T. Kotnik, G. Pucihar, D. Miklavčič, Induced transmembrane voltage and its correlation with electroporation-mediated molecular transport. J. Membr. Biol. 236, 3–13 (2010)

    Article  Google Scholar 

  • S. Kwee, H.V. Nielsen, J.E. Celis, Electropermeabilization of human cultured cells grown in monolayers: incorporation of monoclonal antibodies. J. Electroanal. Chem. 298, 65–80 (1990)

    Article  Google Scholar 

  • A. Liew, F.M. Andre, L.L. Lesueur, M.A. De Menorval, T. O’Brien, L.M. Mir, Robust, efficient, and practical electrogene transfer method for human mesenchymal stem cells using square electric pulses. Hum. Gene. Ther. Methods 24, 289–297 (2013)

    Article  Google Scholar 

  • Y.C. Lin, M. Li, C.S. Fan, L.W. Wu, A microchip for electroporation of primary endothelial cells. Sensors Actuators A Phys. 108, 12–19 (2003)

    Article  Google Scholar 

  • K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001)

    Article  Google Scholar 

  • I. Marjanovič, S. Haberl, D. Miklavčič, M. Kandušer, M. Pavlin, Analysis and comparison of electrical pulse parameters for gene electrotransfer of two different cell lines. J. Membr. Biol. 236, 97–105 (2010)

    Article  Google Scholar 

  • L.W. Matthiessen, R.L. Chalmers, D.C.G. Sainsbury, S. Veeramani, G. Kessell, A.C. Humphreys et al., Management of cutaneous metastases using electrochemotherapy. Acta Oncol. 50, 621–629 (2011)

    Article  Google Scholar 

  • D. Miklavčič, Network for development of electroporation-based technologies and treatments: COST TD1104. J. Membr. Biol. 245, 591–598 (2012)

    Article  Google Scholar 

  • D. Miklavčič, G. Serša, E. Brecelj, J. Gehl, D. Soden, G. Bianchi et al., Electrochemotherapy: technological advancements for efficient electroporation-based treatment of internal tumors. Med. Biol. Eng. Comput. 50, 1213–1225 (2012)

    Article  Google Scholar 

  • L.M. Mir, Therapeutic perspectives of in vivo cell electropermeabilization. Bioelectrochemistry 53, 1–10 (2001)

    Article  Google Scholar 

  • E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845 (1982)

    Google Scholar 

  • D.J. Orlicky, J. Schaack, Adenovirus transduction of 3T3-L1 cells. J. Lipid Res. 42, 460–466 (2001)

    Google Scholar 

  • E. Pasqualotto, A. Ferrario, M. Scaramuzza, A. De Toni, M. Maschietto, Monitoring electropermeabilization of adherent mammalian cells through electrochemical impedance spectroscopy. Procedia Chem. 6, 79–88 (2012)

    Article  Google Scholar 

  • M. Pavlin, D. Miklavcic, Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation—relation between short-lived and long-lived pores. Bioelectrochemistry 74, 38–46 (2008)

    Article  Google Scholar 

  • M. Pavlin, M. Kanduser, M. Rebersek, G. Pucihar, F.X. Hart, R. Magjarevic et al., Effect of cell electroporation on the conductivity of a cell suspension. Biophys. J. 88, 4378–4390 (2005)

    Article  Google Scholar 

  • M. Rebersek, C. Faurie, M. Kanduser, S. Corovic, J. Teissie, M.P. Rols et al., Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro. Biomed. Eng. Online 6, 25 (2007)

    Article  Google Scholar 

  • M.P. Rols, J. Teissié, Experimental evidence for the involvement of the cytoskeleton in mammalian cell electropermeabilization. Biochim. Biophys. Acta Biomembr. 1111, 45–50 (1992)

    Article  Google Scholar 

  • M.P. Rols, C. Delteil, M. Golzio, J. Teissié, Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur. J. Biochem. 254, 382–388 (1998)

    Article  Google Scholar 

  • B. Sanchez, G. Vandersteen, R. Bragos, J. Schoukens, Optimal multisine excitation design for broadband electrical impedance spectroscopy. Meas. Sci. Technol. 22, 115601 (2011)

    Article  Google Scholar 

  • E. Sarró, M. Lecina, A. Fontova, C. Solà, F. Gòdia, J.J. Cairó et al., Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosens. Bioelectron. 31, 257–263 (2012)

    Article  Google Scholar 

  • T. Shimokawa, K. Okumura, C. Ra, DNA induces apoptosis in electroporated human promonocytic cell line U937. Biochem. Biophys. Res. Commun. 270, 94–99 (2000)

    Article  Google Scholar 

  • S.I. Sukharev, V.A. Klenchin, S.M. Serov, L.V. Chernomordik, Y.A. Chizmadzhev, Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys. J. 63, 1320–27 (1992)

    Article  Google Scholar 

  • J. Teissie, M. Golzio, M.P. Rols, Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim. Biophys. Acta Gen. Subj. 1724, 270–280 (2005)

    Article  Google Scholar 

  • V.F.I. Van Tendeloo, P. Ponsaerts, F. Lardon, G. Nijs, M. Lenjou, C. Van Broeckhoven et al., Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98, 49–56 (2001)

    Article  Google Scholar 

  • R. Walzem, M. Hickman, J. German, R. Hansen, Transfection of avian LMH-2A hepatoma cells with cationic lipids. Poult. Sci. 76, 882–886 (1997)

    Article  Google Scholar 

  • T.D. Xie, T.Y. Tsong, Study of mechanisms of electric field-induced DNA transfection. V. Effects of DNA topology on surface binding, cell uptake, expression, and integration into host chromosomes of DNA in the mammalian cell. Biophys. J. 65, 1684–1689 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by grants SAF2009-07559 and SAF2012-37480 from the Spanish Ministerio de Ciencia e Innovación (MCI) and CIBERDEM de Diabetes y Enfermedades Metabólicas Asociadas (CB07/08/0012). We also thank Anna Orozco and Alfonso Mendez for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás García-Sánchez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 9573 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Sánchez, T., Guitart, M., Rosell-Ferrer, J. et al. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers. Biomed Microdevices 16, 575–590 (2014). https://doi.org/10.1007/s10544-014-9860-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9860-6

Keywords

Navigation