Skip to main content

Advertisement

Log in

A flexible super-capacitive solid-state power supply for miniature implantable medical devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present a high-energy local power supply based on a flexible and solid-state supercapacitor for miniature wireless implantable medical devices. Wireless radio-frequency (RF) powering recharges the supercapacitor through an antenna with an RF rectifier. A power management circuit for the super-capacitive system includes a boost converter to increase the breakdown voltage required for powering device circuits, and a parallel conventional capacitor as an intermediate power source to deliver current spikes during high current transients (e.g., wireless data transmission). The supercapacitor has an extremely high area capacitance of ~1.3 mF/mm2, and is in the novel form of a 100 μm-thick thin film with the merit of mechanical flexibility and a tailorable size down to 1 mm2 to meet various clinical dimension requirements. We experimentally demonstrate that after fully recharging the capacitor with an external RF powering source, the supercapacitor-based local power supply runs a full system for electromyogram (EMG) recording that consumes ~670 μW with wireless-data-transmission functionality for a period of ~1 s in the absence of additional RF powering. Since the quality of wireless powering for implantable devices is sensitive to the position of those devices within the RF electromagnetic field, this high-energy local power supply plays a crucial role in providing continuous and reliable power for medical device operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  Google Scholar 

  • R.A. Bercich, J. Joseph, O. Gall, J. Maeng, Y. Kim and P.P. Irazoqui, Implantable device for intramuscular myoelectric signal Recording. 2nd IEEE EMBS Unconference on Rehabilitation Robotics, (2012)

  • R.A. Bercich, D.R. Duffy and P.P. Irazoqui, Far field RF powering of implantable devices: safety considerations. IEEE Transactions on Biomedical Engineering (2013). doi:10.1109/TBME.2013.2246787

  • R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E. Takeuchi, Batteries, 1977 to 2002. J Electrochem Soc 151, K1–K11 (2004)

    Article  Google Scholar 

  • E.J. Carlson, K. Strunz, B.P. Otis, A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid State Circuits 45, 741–750 (2010)

    Article  Google Scholar 

  • H. Chen, B.Q. Wei, D.S. Ma, Energy storage and management system with carbon nanotube supercapacitor and multidirectional power delivery capability for autonomous wireless sensor nodes. IEEE Trans Power Electron 25, 2897–2909 (2010)

    Article  Google Scholar 

  • J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010)

    Article  Google Scholar 

  • E.Y. Chow, C.L. Yang, A. Chlebowski, W.J. Chappell, P.P. Irazoqui, Miniature antenna for RF telemetry through ocular tissue. IEEE MTT-S Int Microw Symp Dig 1–4, 860–863 (2008)

    Google Scholar 

  • E.Y. Chow, A.L. Chlebowski, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng 57, 1487–1496 (2010a)

    Article  Google Scholar 

  • E.Y. Chow, A.L. Chlebowski, P.P. Irazoqui, A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans Biomed Circ Syst 4, 340–349 (2010b)

    Article  Google Scholar 

  • E.Y. Chow, C.L. Yang, A. Chlebowski, S. Moon, P.P. Irazoqui, W.J. Chappell, RF powering for miniature implantable biomedical devices. Inst Electron Electr Eng Trans Antennas Propag 59, 2379–2387 (2011)

    Google Scholar 

  • E.Y. Chow, C. Yang, P.P. Irazoqui, Chapter 9: wireless powering and propagation of radio frequencies through tissue, in By Agbinya J, ed. by W.P. Transfer (River Publisher, Aalborg, Denmark, 2012), pp. 301–336

    Google Scholar 

  • J.F. Dickson, On-chip high-voltage generation in MNOS integrated-circuits using an improved voltage multiplier technique. IEEE J Solid State Circuits 11, 374–378 (1976)

    Article  Google Scholar 

  • E. Frackowiak, Carbon materials for supercapacitor application. Phys Chem Chem Phys 9, 1774–1785 (2007)

    Article  Google Scholar 

  • D. Ha, W.N. de Vries, S.W.M. John, P.P. Irazoqui, W.J. Chappell, Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed Microdevices 14, 207–215 (2012)

    Article  Google Scholar 

  • R.A. Huggins, Supercapacitors and electrochemical pulse sources. Solid State Ion. 134, 179–195 (2000)

    Article  Google Scholar 

  • R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  • S. Lee, E. Krook-Magnuson, O. Abdel-Latief, C. Armstrong, I. Soltesz and P.P. Irazoqui, LED platform for wireless optical stimulation. Proceedings of the American Epilepsy Society, (2011)

  • V. Marian, B. Allard, C. Vollaire, J. Verdier, Strategy for microwave energy harvesting from ambient field or a feeding source. IEEE Trans Power Electron 27, 4481–4491 (2012)

    Article  Google Scholar 

  • C.Z. Meng, C.H. Liu, L.Z. Chen, C.H. Hu, S.S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 10, 4025–4031 (2010)

    Article  Google Scholar 

  • J.R. Miller and A.F. Burke, Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. The Electrochemical Society Interface 53–57 (2008)

  • Part 15 - Radio Frequency Devices (47 CFR 15), Title 47 of the Code of Federal Regulation. F. C. Commission, current as of April 9, 2012

  • D. Pech, M. Brunet, H. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5, 651–654 (2010)

    Article  Google Scholar 

  • S. Raghunathan, S.K. Gupta, H.S. Markandeya, P.P. Irazoqui, K. Roy, Ultra low-power algorithm design for implantable devices: application to epilepsy prostheses. J Low Power Electron Appl 1, 175–203 (2011)

    Article  Google Scholar 

  • A. Richelli, L. Colalongo, S. Tonoli, Z.M. Kovacs-Vajna, A 0.2-1.2 V DC/DC Boost Converter for Power Harvesting Applications. IEEE Trans Power Electron 24, 1541–1546 (2009)

    Article  Google Scholar 

  • B.W. Ricketts, C. Ton-That, Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sources 89, 64–69 (2000)

    Article  Google Scholar 

  • Y.C. Shih, T. Shen, B.P. Otis, A 2.3 uW wireless intraocular pressure/temperature monitor. IEEE J Solid State Circuits 46, 2592–2601 (2011)

    Article  Google Scholar 

  • F.I. Simjee, P.H. Chou, Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans Power Electron 23, 1526–1536 (2008)

    Article  Google Scholar 

  • F. Simjee, P.H. Chou and Acm, Everlast: Long-life, supercapacitor-operated wireless sensor node. ISLPED’06: Proceedings of the 2006 International Symposium on Low Power Electronics and Design, 197–202 (2006)

  • P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater 7, 845–854 (2008)

    Article  Google Scholar 

  • S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. MacFarlane, M. Forsyth, D.W. Kim, Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171, 1062–1068 (2007)

    Article  Google Scholar 

  • Y.F. Yan, Q.L. Cheng, G.C. Wang, C.Z. Li, Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources 196, 7835–7840 (2011)

    Article  Google Scholar 

Download references

Acknowledgment

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) MTO under the auspices of Dr. Jack Judy through the Space and Naval Warfare Systems Center, Pacific Grant/Contract No. N66001-11-1-4029. The authors also would like to acknowledge Dr. Arthur L. Chlebowski for his help in the experimental setup of wireless RF powering, Guoping Xiong for his supply of the CNT paper and Dohyuk Ha for his help in Au deposition on the CNT paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuizhou Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, C., Gall, O.Z. & Irazoqui, P.P. A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed Microdevices 15, 973–983 (2013). https://doi.org/10.1007/s10544-013-9789-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9789-1

Keywords

Navigation