Skip to main content

Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics

Abstract

The aim of this study was to demonstrate targeted delivery of protein-based bactericidal antibiotics using electrospun polymer nanofibers. Previous studies have utilized electrospinning to create nanofibers for the localized delivery of therapeutic agents, including non-steroidal anti-inflammatory drugs (NSAIDs) and low molecular weight heparin. By employing established electrospinning techniques, nanofibers of varying diameters (100–500 nm) were generated from a 0.05 % solution of poly(ethylene-oxide) (PEO) and the antimicrobial peptide, LL-37 was incorporated into the nanofiber meshwork. Initial experiments determined that the strong electric fields caused by electrospinning do not disrupt the antimicrobial properties of LL-37, thus justifying the application of LL-37 as an electrospun component. Disk diffusion assays and especially bacterial filtration studies with E. coli were conducted to quantify the drug delivery potential of the nanofibers. Disk diffusion revealed a small zone of inhibition of about 1 mm around the LL-37-incorporated nanofiber disk. Filtration tests demonstrated that electrospun PEO fibers were capable of delivering LL-37 consistently while still maintaining their antimicrobial abilities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • M. Bagheri, M. Beyermann, M. Dathe, Antimicrob. Agents Chemother. 53(3), 1132–1141 (2009)

    Article  Google Scholar 

  • N. Bhardwaj, S. Kundu, Biotechnol. Adv. 28(3), 325–347 (2010)

    Article  Google Scholar 

  • N. Bölgen, I. Vargel, P. Korkusuz, Y. Menceloglu, E. Piskin, J. Biomed. Mater. Res. B 81B, 530–543 (2007)

    Article  Google Scholar 

  • R. Bucki, K. Leszczynska, A. Namiot, W. Sokolowski, Arch. Immunol. Ther. Exp. 58, 15–25 (2010)

    Article  Google Scholar 

  • M. Burton, P. Steel, Nat. Prod. Rep. 26, 1572–1584 (2009)

    Article  Google Scholar 

  • C.L. Casper, N. Yamaguchi, K.L. Kiick, J.F. Rabolt, Biomacromolecules 6(4), 1998–2007 (2005)

    Article  Google Scholar 

  • T. Heunis, O. Bshena, B. Klumperman, L. Dicks, Int. J. Mol. Sci. 12, 2158-2173 (2011)

    Google Scholar 

  • D. Juretic, H.C. Chen, J.H. Brown, J.L. Morell, R.W. Hendler, H.V. Westerhoff, FEBS Lett. 249, 219–223 (1989)

    Article  Google Scholar 

  • E.R. Kenawy, G.L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E.H. Sanders, G.E. Wnek, J. Control. Release 81(1–2), 57–64 (2002)

    Article  Google Scholar 

  • E.R. Kenawy, J.M. Layman, J.R. Watkins, G.L. Bowlin, J.A. Matthews, D.G. Simpson, G.E. Wnek, Biomaterials 24(6), 907–913 (2003)

    Article  Google Scholar 

  • G. Kim, H. Yoon, Y. Park, Appl. Phys. A 100, 1197–1204 (2010)

    Google Scholar 

  • C.C. Lee, Y. Sun, S. Qian, H.W. Huang, Biophys. J. 100(7), 1688–1696 (2011)

    Article  Google Scholar 

  • K. Matsuzaki, K. Sugishita, M. Harada, N. Fujii, K. Miyajima, Biochem. Biophys. Acta 1327, 119–130 (1997)

    Article  Google Scholar 

  • P. Méndez-Samperio, Peptides. 31(9), 1791-1798 (2010)

  • B.A. Miller-Chou, J.L. Koenig, Prog. Polym. Sci. 28(8), 1223–1270 (2003)

    Article  Google Scholar 

  • M. Ohta, H. Ito, K. Masuda, S. Tanaka, Y. Arakawa, R. Wacharotayankun, N. Kato, Antimicrob. Agents Chemother. 36, 1460–1465 (1992)

    Article  Google Scholar 

  • Z. Oren, J.C. Lerman, G.H. Gudmundsson, B. Agerberth, Y. Shai, Biochem. J. 341(3), 501–513 (1999)

    Article  Google Scholar 

  • E.N. Perencevich, D. Pittet, JAMA 301(12), 1285–1287 (2009)

    Article  Google Scholar 

  • S.M. Phadke, V. Lazarevic, C.C. Bahr, K. Islam, D.B. Stolz, S. Watkins, S.B. Tencza, H.J. Vogel, R.C. Montelaro, T.A. Mietzner, Antimicrob. Agents Chemother. 46(6), 2041–2045 (2002)

    Article  Google Scholar 

  • A. Schmidtchen, I. Frick, E. Andersson, H. Tapper, L. Bjorck, Mol. Microbiol. 46(1), 157–158 (2002)

    Article  Google Scholar 

  • F.M. Veronese, G. Pasut, Drug Discov. Today 10(21), 1451–1458 (2005)

    Article  Google Scholar 

  • Y. Zhang, C.T. Lim, S. Ramakrishna, Z.M. Huang, J. Mater. Sci. Mater. Med. 16, 933–946 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Michael Hickey and Anne Rosenwald for bacterial strains, Anahita Bharadwaj, Chris Sherwin, Steven Metallo, Reynolds Lowry, Leon Der, and Margaret Gatti for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makarand Paranjape.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gatti, J.W., Smithgall, M.C., Paranjape, S.M. et al. Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomed Microdevices 15, 887–893 (2013). https://doi.org/10.1007/s10544-013-9777-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9777-5

Keywords

  • Electrospinning
  • Nanofibers
  • Bacteriolytic
  • Antibiotics
  • Drug delivery