Skip to main content

Flexible probe for in vivo quantification of corneal epithelium permeability through non-invasive tetrapolar impedance measurements

Abstract

Studies concerning the functional status of the corneal epithelium are of special interest due to its key role in preventing ocular surface disease and corneal infections. In particular, quantitative measurements of the epithelium permeability translayer electrical resistance (TER) have been proven as a sensitive in vitro test for evaluation of the corneal barrier function. In a recent work from the authors (Guimera et al. Biosens. Bioelectron. 31:55–61, 2012), a novel method to non-invasively assess the corneal epithelial permeability by using tetrapolar impedance measurements, based on the same TER theoretical principles, was presented and validated using a rigid sensing device. In this work, the usability of this method has been dramatically improved by using SU-8 photoresist as a substrate material. The flexibility of this novel sensing device makes no need to apply pressure on the cornea to ensure the electrical contact between the electrodes and the corneal surface. The feasibility of this flexible sensor has been evaluated in vivo by increasing the permeability of rabbit corneal epithelium. For that, different concentrations of benzalkonium chloride (BAC) solution were instilled on different rabbit corneas. The obtained results have been compared with measurements of the permeability to sodium fluorescein of different excised corneas, a well-known method used to evaluate the corneal barrier function, to demonstrate the feasibility of this novel flexible sensor for quantifying the corneal epithelium permeability in vivo in a non-invasive way.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • M. Ayaki, A. Iwasawa, Cell viability of four corneoconjunctival cell lines exposed to five preservatives and a surfactant used for infection control in eyedrops. Biocontrol Sci. 16, 117–121 (2011)

    Article  Google Scholar 

  • C. Baudouin, A. Labbé, H. Liang et al., Preservatives in eyedrops: the good, the bad and the ugly. Prog. Retin. Eye Res. 29, 312–334 (2010). doi:10.1016/j.preteyeres.2010.03.001

    Article  Google Scholar 

  • E. Calderón, A. Melero, A. Guimerà, Portable device for microelectrode array bio-impedance measurements, in World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, ed. by O. Dössel, W.C. Schlegel (Springer, Munich, 2009), pp. 883–886

    Chapter  Google Scholar 

  • M.E. Cavet, K.R. VanDerMeid, K.L. Harrington et al., Effect of a novel multipurpose contact lens solution on human corneal epithelial barrier function. Contact Lens Anterior Eye 33, S18–S23 (2010)

    Article  Google Scholar 

  • W. Chen, Z. Li, J. Hu et al., Corneal alternations induced by topical application of benzalkonium chloride in rabbit. PLoS One (2011). doi:10.1371/journal.pone.0026103

    Google Scholar 

  • W. Chen, J. Hu, Z. Zhang et al., Localization and expression of zonula occludins-1 in the rabbit corneal epithelium following exposure to benzalkonium chloride. PLoS One 7, e40893 (2012). doi:10.1371/journal.pone.0040893

    Article  Google Scholar 

  • P. Chetoni, S. Burgalassi, D. Monti, M.F. Saettone, Ocular toxicity of some corneal penetration enhancers evaluated by electrophysiology measurements on isolated rabbit corneas. Toxicol. in Vitro 17, 497–504 (2003)

    Article  Google Scholar 

  • P. Furrer, J.M. Mayer, R. Gurny, Ocular tolerance of preservatives and alternatives. Eur. J. Pharm. Biopharm. 53, 263–280 (2002)

    Article  Google Scholar 

  • G. Gabriel, I. Erill, J. Caro et al., Manufacturing and full characterization of silicon carbide-based multi-sensor micro-probes for biomedical applications. Microelectron. J. 38, 406–415 (2007). doi:10.1016/j.mejo.2006.11.008

  • G. Gabriel, R. Gómez-Martínez, R. Villa, Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance. Physiol. Meas. 29, S203–S212 (2008). doi:10.1088/0967-3334/29/6/S18

    Article  Google Scholar 

  • D.B. Geselowitz, An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng. BME-18, 38–41 (1971). doi:10.1109/TBME.1971.4502787

    Article  Google Scholar 

  • S. Grimnes, Ø.G. Martinsen, Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. D. Appl. Phys. 40, 9–14 (2007). doi:10.1088/0022-3727/40/1/S02

    Article  Google Scholar 

  • S. Grimnes, Ø.G. Martinsen, Chapter 4 - Passive tissue electrical properties. Bioimpedance and bioelectricity basics, 2nd edn. (Academic Press, New York, 2008), pp. 93–137

  • A. Guimera, E. Calderon, P. Los, A.M. Christie, Method and device for bio-impedance measurement with hard-tissue applications. Physiol. Meas. 29, S279–S290 (2008)

    Article  Google Scholar 

  • A. Guimerà, G. Gabriel, D. Parramon et al., Portable 4 wire bioimpedance meter with bluetooth link, in World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, ed. by O. Dössel, W.C. Schlegel (Springer, Munich, 2009), pp. 868–871

    Chapter  Google Scholar 

  • A. Guimera, A. Ivorra, G. Gabriel, R. Villa, Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements. Med. Eng. Phys. 32, 1107–1115 (2010). doi:10.1016/j.medengphy.2010.07.016

    Article  Google Scholar 

  • A. Guimera, G. Gabriel, M. Plata-Cordero et al., A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements. Biosens. Bioelectron. 31, 55–61 (2012). doi:10.1016/j.bios.2011.09.039

    Article  Google Scholar 

  • S. Keller, G. Blagoi, M. Lillemose et al., Processing of thin SU-8 films. J. Micromech. Microeng. 18, 125020 (2008). doi:10.1088/0960-1317/18/12/125020

    Google Scholar 

  • K. Kimura, S. Teranishi, K. Fukuda et al., Delayed disruption of barrier function in cultured human corneal epithelial cells induced by tumor necrosis factor-α in a manner dependent on NF-κB. IOVS 49, 565–571 (2008). doi:10.1167/iovs.07-0419

    Google Scholar 

  • K. Kimura, S. Teranishi, K. Kawamoto, T. Nishida, Protective effect of dexamethasone against hypoxia-induced disruption of barrier function in human corneal epithelial cells. Exp. Eye Res. 92, 388–393 (2011). doi:10.1016/j.exer.2011.02.013

    Article  Google Scholar 

  • S. Kinoshita, W. Adachi, C. Sotozono et al., Characteristics of the human ocular surface epithelium. Prog. Retin. Eye Res. 20, 639–673 (2001)

    Article  Google Scholar 

  • M. Kusano, M. Uematsu, T. Kumagami et al., Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo. Cornea 29, 80–85 (2010). doi:10.1097/ICO.0b013e3181a3c3e6

    Article  Google Scholar 

  • D.M. Lehmann, M.E. Cavet, M.E. Richardson, Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, BiotrueTM multi-purpose solution. Contact Lens Anterior Eye 33, S24–S32 (2010)

    Article  Google Scholar 

  • H. Lorenz, M. Despont, N. Fahrni et al., SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121–124 (1997)

    Article  Google Scholar 

  • L. Ma, K. Kuang, R.W. Smith et al., Modulation of tight junction properties relevant to fluid transport across rabbit corneal endothelium. Exp. Eye Res. 84, 790–798 (2007). doi:10.1016/j.exer.2006.12.018

    Article  Google Scholar 

  • N.A. McNamara, R.E. Fusaro, R.J. Brand et al., Measurement of corneal epithelial permeability to fluoresce in: a repeatability study. Investig. Ophthalmol. Vis. Sci. 38, 1830–1839 (1997)

    Google Scholar 

  • C.S.D. Paiva, R.M. Corrales, A.L. Villarreal et al., Apical corneal barrier disruption in experimental murine dry eye is abrogated by methylprednisolone and doxycycline. IOVS 47, 2847–2856 (2006). doi:10.1167/iovs.05-1281

    Google Scholar 

  • D.A. Robinson, The electrical properties of metal microelectrodes. Proceedings of the IEEE 56, 1065–1071 (1968). doi:10.1109/PROC.1968.6458

  • Y. Rojanasakul, J.R. Robinson, Electrophysiological and ultrastructural characterization of the cornea during in vitro perfusion. Int. J. Pharm. 63, 1–16 (1990)

    Article  Google Scholar 

  • J.-D. Schulzke, D. Günzel, L.J. John, M. Fromm, Perspectives on tight junction research. Ann. N. Y. Acad. Sci. 1257, 1–19 (2012). doi:10.1111/j.1749-6632.2012.06485.x

    Article  Google Scholar 

  • H.P. Schwan, C.D. Ferris, Four-electrode null techniques for impedance measurement with high resolution. Rev. Sci. Instrum. 39, 481–485 (1968). doi:10.1063/1.1683413

    Article  Google Scholar 

  • S. Swamynathan, D. Kenchegowda, J. Piatigorsky, S. Swamynathan, Regulation of corneal epithelial barrier function by krüppel-like transcription factor 4. IOVS 52, 1762–1769 (2011). doi:10.1167/iovs.10-6134

    Google Scholar 

  • K.C. Swan, Reactivity of the ocular tissues to wetting agents. Am. J. Ophthalmol. 27, 1118–1122 (1944)

    Google Scholar 

  • M. Uematsu, T. Kumagami, M. Kusano et al., Acute corneal epithelial change after instillation of benzalkonium chloride evaluated using a newly developed in vivo corneal transepithelial electric resistance measurement method. Ophthalmic Res. 39, 308–314 (2007). doi:10.1159/000109986

    Article  Google Scholar 

  • R. Vilares, C. Hunter, I. Ugarte et al., Fabrication and testing of a SU-8 thermal flow sensor. Sensors Actuators B Chem. 147, 411–417 (2010). doi:10.1016/j.snb.2010.03.054

    Article  Google Scholar 

  • F. Yang, R.P. Patterson, A simulation study on the effect of thoracic conductivity inhomogeneities on sensitivity distributions. Ann. Biomed. Eng. 36, 762–768 (2008). doi:10.1007/s10439-008-9469-0

    Article  Google Scholar 

Download references

Acknowledgments

We thank to Antoni Ivorra for his contribution in the FEM modeling and sensor conception. This work has been funded by the projects SAF2009-14724-C02-02 from the Spanish Ministry of Science and Innovation, IPT-2012-0438-010000 and SAF2012-40227-C02-02 from Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund.

Conflict of interest

Laboratorios SALVAT S.A. holds the patent WO2011/107645 A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guimerà.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guimerà, A., Illa, X., Traver, E. et al. Flexible probe for in vivo quantification of corneal epithelium permeability through non-invasive tetrapolar impedance measurements. Biomed Microdevices 15, 849–858 (2013). https://doi.org/10.1007/s10544-013-9772-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9772-x

Keywords

  • Electrical impedance spectroscopy
  • Corneal epithelium
  • Permeability
  • Barrier function
  • Translayer electrical resistance
  • Non-invasive