Skip to main content

In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

Abstract

Targeted drug delivery using nanocrystalline materials delivers the drug at the deseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. G.I. Abeleb, Cancer Res. 28, 1344 (1986)

    Google Scholar 

  2. A.C. Antony, Annu. Rev. Nutr. 16, 501 (1996)

    Article  Google Scholar 

  3. D. Bailey, K. Mujoo, M.E. Blake, C.J. Arntxen, J.U. Gutter-man, PNAS USA 98, 5821 (2001)

    Article  Google Scholar 

  4. D.D. Banker, Indian J. Med. Sci. 57, 511 (2003)

    Google Scholar 

  5. R. Benoit, D. Breuille, F. Rambourdin, G. Bayle, P. Capitan, C. Obled, Am. J. Physiol. Endocrinol. Metab. 279, 244 (2000)

    Google Scholar 

  6. R. Castino, M. Demoz, C. Isidoro, J. Mol. Recognit. 16, 337 (2003)

    Article  Google Scholar 

  7. C.K. Chang, G. Astrakianakis, D.B. Thomas, N.S. Seixas, R.M. Ray, D.L. Gao, K.J. Wernli, E.D. Fitzgibbons, T.L. Vaughan, H. Checkoway, Int. J. Epidemiol. 35, 361 (2006)

    Article  Google Scholar 

  8. M. Cheesbrough, District laboratory practice in tropical countries. Part 1 (Cambridge University Press, Cambridge, 1998), p. 348

    Google Scholar 

  9. D. Chowdhury, A. Paul, A. Chattopadhyay, Langmuir 21, 4123 (2005)

    Article  Google Scholar 

  10. C.R. Dass, T. Su, Drug Deliv. 8, 191 (2001)

    Article  Google Scholar 

  11. N. Desai, J. Hubbell, Macromolecules 25, 226 (1992)

    Article  Google Scholar 

  12. G. Devanand Venkatasubbu, S. Ramasamy, G.S. Avadhani, L. Palanikumar, J. Kumar, J. Nanoparticle Res. (2012). doi:10.1007/s11051-012-0819-3

  13. G. Devanand Venkatasubbu, S. Ramasamy, G.S. Avadhani, V. Ramakrishnan, J. Kumar, Powder Technol. 235, 437 (2013)

    Article  Google Scholar 

  14. C.H. Dubin, Mech. Eng. Nanotechnol. 126, 10 (2004)

    Google Scholar 

  15. S. Fiala, E.S. Fiala, J. Natl. Cancer Inst. 51, 151 (1973)

    Article  Google Scholar 

  16. B.A. Gruner, S.D. Weitman, Investig. New Drugs 16, 205 (1998)

    Article  Google Scholar 

  17. R.L. Gutman, G. Peacock, D.R. Lu, J. Control. Release 65, 31 (2000)

    Article  Google Scholar 

  18. W.S. Ha, C.K. Kim, S.H. Sung, C.B. Kang, J. Vet. Sci. 2, 53 (2001)

    Google Scholar 

  19. J.A. Halsted, C.H. Halsted, The laboratory in clinical medicine: interpretation and application, 2nd edn. (WB, Saunders Company, Philadelphia, 1991), p. 281

    Google Scholar 

  20. M. Hamadanian, A.R. Vanani, A. Majedi, J. Iran. Chem. Soc. 7, S52 (2010)

    Article  Google Scholar 

  21. M. Hanigan, H. Pitot, Carcinogenesis 6, 165 (1985)

    Article  Google Scholar 

  22. Y. Hu, J. Xie, Y.W. Tong, C.H. Wang, J. Control. Release 118, 7 (2007)

    Article  Google Scholar 

  23. L. Illum, S.S. Davis, R.H. Miiller, E. Mak, P. West, Life Sci. 40, 367 (1987)

    Article  Google Scholar 

  24. J. Iqbal, M. Minhajuddin, Z.H. Beg, Eur. J. Cancer Prev. 13, 515 (2004)

    Article  Google Scholar 

  25. A. Jemal, T. Murray, E. Ward, A. Samuels, R.C. Tiwari, A. Ghafoo, E.J. Feuer, M.J. Thun, Cancer J. Clin 55, 10 (2005)

    Article  Google Scholar 

  26. J. Jiang, P.N. Ehle, N. Xu, Lipids Health Dis 5, 4 (2006)

    Article  Google Scholar 

  27. T.H. Kang, H.O. Pae, J.C. Yoo, N.Y. Kim, Y.C. Kim, G.I. Ko, H.T. Chung, J. Ethnopharmacol. 70, 177 (2000)

    Article  Google Scholar 

  28. T. Kobayashi, T. Kawakubo, Cancer 73, 1946 (1994)

    Article  Google Scholar 

  29. B. Koss, O. Greengurd, Cancer Res. 42, 2146 (1982)

    Google Scholar 

  30. M. Kurt, I.K. Sayilir, Y. Beyazit, E.O.M. Kekilli, N.T.K. Karaman, M. Akdogan, Hepato-Gastroenterology 59, 1580 (2012)

    Google Scholar 

  31. H.L. Lin, T.Y. Liu, G.Y. Chau, W.Y. Lui, C.W. Chi, Cancer 89, 983 (2000)

    Article  Google Scholar 

  32. S.C.J. Loo, Y.E. Siew, S. Ho, F.Y.C. Boey, J. Mater. Sci. Mater. Med. 19, 1389 (2008)

    Article  Google Scholar 

  33. N.M.P. Maideen, R. Velayutham, G. Manavalan, Asian J. Pharm. Life Sci. 2, 1 (2012)

    Google Scholar 

  34. S. Malomo, Nig. J. Biochem. Mol. Biol. 15, 33 (2000)

    Google Scholar 

  35. A. Manivannan, G. Glaspell, P. Dutta, J. Clust. Sci. 19, 391 (2008)

    Article  Google Scholar 

  36. S. Mucisc, M. Goti, M. Ivanda, S. Popovi, A. Turkovi, R. Trojko, A. Sekuli, K. Furi, Mater. Sci. Eng. B47, 33 (1997)

    Google Scholar 

  37. H.T. Ong, J.S.C. Loo, F.Y.C. Boey, S.J. Russell, J. Ma, K. Peng, J. Nanoparticle Res. 10, 141 (2008)

    Article  Google Scholar 

  38. J. Pan, S.-S. Feng, Biomaterials 29, 2663 (2008)

    Article  Google Scholar 

  39. A.Y. Pataquiva Mateus, M.P. Ferraz, F.J. Monteiro, Key Eng. Mater. 330, 243 (2007)

    Article  Google Scholar 

  40. P.S. Patel, G.N. Rawal, D.B. Bala, Tumor Biol. 15, 45 (1994)

    Article  Google Scholar 

  41. T. Rajh, L.X. Chen, K. Lukas, T. Liu, M.C. Thurnauer, D.M. Tiede, J. Phys. Chem. B 106, 10543 (2002)

    Article  Google Scholar 

  42. D. Robert, J.V. Weber, J. Mater. Sci. Lett. 18, 97 (1999)

    Article  Google Scholar 

  43. E. Rocchi, Y. Seium, L. Camellini, G. Casalgrandi, A. Borghi, P. D’Alimonte, G. Cioni, Hepatology 26, 67 (1997)

    Article  Google Scholar 

  44. T.M. Saba, Arch. Intern. Med. 126(1031) (1970)

  45. R. Sallie, J.M. Tredger, R. Willam, Drug Dispos 12, 251 (1991)

    Article  Google Scholar 

  46. G. Schumann, R. Bonora, F. Ceriotti, Clin. Chem. Lab. Med. 40, 718 (2002)

    Google Scholar 

  47. A. Sehrawat, S. Sultana, Life Sci. 79, 1456 (2006)

    Article  Google Scholar 

  48. F. Siepmann, S. Muschert, M.P. Flament, P. Leterme, A. Gayot, Int. J. Pharm. 317, 136 (2006)

    Article  Google Scholar 

  49. P.J. Stevens, M. Sekido, R.J. Lee, Pharm. Res. 21, 2153 (2004)

    Article  Google Scholar 

  50. B.A.J. Sudimack, R.J. Lee, Adv. Drug Deliv. Rev. 41, 147 (2000)

    Article  Google Scholar 

  51. C. Thirunavukkarasu, D. Sakthisekaran, Cell Biochem. Funct. 21, 147 (2003)

    Article  Google Scholar 

  52. C.D. Thomson, Analyst 123, 827 (1998)

    Article  Google Scholar 

  53. N. Thusu, P.N. Raina, R.K. Johri, Indian J. Exp. Biol. 29, 1124 (1991)

    Google Scholar 

  54. V.P. Torchilin, Eur. J. Pharm. Sci. 11(S81) (2000)

  55. A.J. Vanisree, C.S. Shyamala Devi, Indian J. Pharmacol. 31(275) (1998)

  56. S.P. Vyas, V. Sihorkar, Adv. Drug Deliv. Rev. 43(101) (2000)

  57. S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanoparticle Res. 6, 193 (2004)

    Article  Google Scholar 

  58. S.D. Weitman, R.H. Lark, L.R. Coney, D.W. Fort, V. Frasca, V.R. Zurawski Jr., B.A. Kamen, Cancer Res. 52, 3396 (1992)

    Google Scholar 

  59. Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, Y. Li, Int. J. Pharm. 288, 361 (2005)

    Article  Google Scholar 

  60. J. Yamamoto, T. Kosuge, T. Takayama, K. Shimada, S. Yamasaki, H. Ozaki, N. Yamaguchi, M. Makuuchi, Br. J. Surg. 83, 1219 (1996)

    Article  Google Scholar 

  61. M. Yokoyama, J. Artif. Organs 8, 77 (2005)

    Article  Google Scholar 

  62. J. Zang, S. Rana, R.S. Srivastava, R.D.K. Misra, Acta Biomater. 4, 40 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. S. Ramasamy, CSIR Emeritus Scientist, acknowledge the financial support given to him to carry out this work under CSIR Emeritus Scientist Scheme number 21(0714)/08/EMR-II dated 28-04-2008. Mr. G. Devanand Venkatasubbu, CSIR SRF, acknowledge CSIR for giving him SRF. The authors are greatful to Dr. (Mrs).V. Meenakumari M.A, M.Phil, Ph.D, Professor, Department of English, A.P.A college for Women, Palani, India (An autonomous college of Mother Theresa University) for making English correction in the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ramasamy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Venkatasubbu, G.D., Ramasamy, S., Reddy, G.P. et al. In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed Microdevices 15, 711–726 (2013). https://doi.org/10.1007/s10544-013-9767-7

Download citation

Keywords

  • Hydroxyapatite
  • Titanium dioxide
  • Targeted drug delivery
  • DEN
  • Hepatocarcinoma