Skip to main content
Log in

In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Targeted drug delivery using nanocrystalline materials delivers the drug at the deseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • G.I. Abeleb, Cancer Res. 28, 1344 (1986)

    Google Scholar 

  • A.C. Antony, Annu. Rev. Nutr. 16, 501 (1996)

    Article  Google Scholar 

  • D. Bailey, K. Mujoo, M.E. Blake, C.J. Arntxen, J.U. Gutter-man, PNAS USA 98, 5821 (2001)

    Article  Google Scholar 

  • D.D. Banker, Indian J. Med. Sci. 57, 511 (2003)

    Google Scholar 

  • R. Benoit, D. Breuille, F. Rambourdin, G. Bayle, P. Capitan, C. Obled, Am. J. Physiol. Endocrinol. Metab. 279, 244 (2000)

    Google Scholar 

  • R. Castino, M. Demoz, C. Isidoro, J. Mol. Recognit. 16, 337 (2003)

    Article  Google Scholar 

  • C.K. Chang, G. Astrakianakis, D.B. Thomas, N.S. Seixas, R.M. Ray, D.L. Gao, K.J. Wernli, E.D. Fitzgibbons, T.L. Vaughan, H. Checkoway, Int. J. Epidemiol. 35, 361 (2006)

    Article  Google Scholar 

  • M. Cheesbrough, District laboratory practice in tropical countries. Part 1 (Cambridge University Press, Cambridge, 1998), p. 348

    Google Scholar 

  • D. Chowdhury, A. Paul, A. Chattopadhyay, Langmuir 21, 4123 (2005)

    Article  Google Scholar 

  • C.R. Dass, T. Su, Drug Deliv. 8, 191 (2001)

    Article  Google Scholar 

  • N. Desai, J. Hubbell, Macromolecules 25, 226 (1992)

    Article  Google Scholar 

  • G. Devanand Venkatasubbu, S. Ramasamy, G.S. Avadhani, L. Palanikumar, J. Kumar, J. Nanoparticle Res. (2012). doi:10.1007/s11051-012-0819-3

  • G. Devanand Venkatasubbu, S. Ramasamy, G.S. Avadhani, V. Ramakrishnan, J. Kumar, Powder Technol. 235, 437 (2013)

    Article  Google Scholar 

  • C.H. Dubin, Mech. Eng. Nanotechnol. 126, 10 (2004)

    Google Scholar 

  • S. Fiala, E.S. Fiala, J. Natl. Cancer Inst. 51, 151 (1973)

    Article  Google Scholar 

  • B.A. Gruner, S.D. Weitman, Investig. New Drugs 16, 205 (1998)

    Article  Google Scholar 

  • R.L. Gutman, G. Peacock, D.R. Lu, J. Control. Release 65, 31 (2000)

    Article  Google Scholar 

  • W.S. Ha, C.K. Kim, S.H. Sung, C.B. Kang, J. Vet. Sci. 2, 53 (2001)

    Google Scholar 

  • J.A. Halsted, C.H. Halsted, The laboratory in clinical medicine: interpretation and application, 2nd edn. (WB, Saunders Company, Philadelphia, 1991), p. 281

    Google Scholar 

  • M. Hamadanian, A.R. Vanani, A. Majedi, J. Iran. Chem. Soc. 7, S52 (2010)

    Article  Google Scholar 

  • M. Hanigan, H. Pitot, Carcinogenesis 6, 165 (1985)

    Article  Google Scholar 

  • Y. Hu, J. Xie, Y.W. Tong, C.H. Wang, J. Control. Release 118, 7 (2007)

    Article  Google Scholar 

  • L. Illum, S.S. Davis, R.H. Miiller, E. Mak, P. West, Life Sci. 40, 367 (1987)

    Article  Google Scholar 

  • J. Iqbal, M. Minhajuddin, Z.H. Beg, Eur. J. Cancer Prev. 13, 515 (2004)

    Article  Google Scholar 

  • A. Jemal, T. Murray, E. Ward, A. Samuels, R.C. Tiwari, A. Ghafoo, E.J. Feuer, M.J. Thun, Cancer J. Clin 55, 10 (2005)

    Article  Google Scholar 

  • J. Jiang, P.N. Ehle, N. Xu, Lipids Health Dis 5, 4 (2006)

    Article  Google Scholar 

  • T.H. Kang, H.O. Pae, J.C. Yoo, N.Y. Kim, Y.C. Kim, G.I. Ko, H.T. Chung, J. Ethnopharmacol. 70, 177 (2000)

    Article  Google Scholar 

  • T. Kobayashi, T. Kawakubo, Cancer 73, 1946 (1994)

    Article  Google Scholar 

  • B. Koss, O. Greengurd, Cancer Res. 42, 2146 (1982)

    Google Scholar 

  • M. Kurt, I.K. Sayilir, Y. Beyazit, E.O.M. Kekilli, N.T.K. Karaman, M. Akdogan, Hepato-Gastroenterology 59, 1580 (2012)

    Google Scholar 

  • H.L. Lin, T.Y. Liu, G.Y. Chau, W.Y. Lui, C.W. Chi, Cancer 89, 983 (2000)

    Article  Google Scholar 

  • S.C.J. Loo, Y.E. Siew, S. Ho, F.Y.C. Boey, J. Mater. Sci. Mater. Med. 19, 1389 (2008)

    Article  Google Scholar 

  • N.M.P. Maideen, R. Velayutham, G. Manavalan, Asian J. Pharm. Life Sci. 2, 1 (2012)

    Google Scholar 

  • S. Malomo, Nig. J. Biochem. Mol. Biol. 15, 33 (2000)

    Google Scholar 

  • A. Manivannan, G. Glaspell, P. Dutta, J. Clust. Sci. 19, 391 (2008)

    Article  Google Scholar 

  • S. Mucisc, M. Goti, M. Ivanda, S. Popovi, A. Turkovi, R. Trojko, A. Sekuli, K. Furi, Mater. Sci. Eng. B47, 33 (1997)

    Google Scholar 

  • H.T. Ong, J.S.C. Loo, F.Y.C. Boey, S.J. Russell, J. Ma, K. Peng, J. Nanoparticle Res. 10, 141 (2008)

    Article  Google Scholar 

  • J. Pan, S.-S. Feng, Biomaterials 29, 2663 (2008)

    Article  Google Scholar 

  • A.Y. Pataquiva Mateus, M.P. Ferraz, F.J. Monteiro, Key Eng. Mater. 330, 243 (2007)

    Article  Google Scholar 

  • P.S. Patel, G.N. Rawal, D.B. Bala, Tumor Biol. 15, 45 (1994)

    Article  Google Scholar 

  • T. Rajh, L.X. Chen, K. Lukas, T. Liu, M.C. Thurnauer, D.M. Tiede, J. Phys. Chem. B 106, 10543 (2002)

    Article  Google Scholar 

  • D. Robert, J.V. Weber, J. Mater. Sci. Lett. 18, 97 (1999)

    Article  Google Scholar 

  • E. Rocchi, Y. Seium, L. Camellini, G. Casalgrandi, A. Borghi, P. D’Alimonte, G. Cioni, Hepatology 26, 67 (1997)

    Article  Google Scholar 

  • T.M. Saba, Arch. Intern. Med. 126(1031) (1970)

  • R. Sallie, J.M. Tredger, R. Willam, Drug Dispos 12, 251 (1991)

    Article  Google Scholar 

  • G. Schumann, R. Bonora, F. Ceriotti, Clin. Chem. Lab. Med. 40, 718 (2002)

    Google Scholar 

  • A. Sehrawat, S. Sultana, Life Sci. 79, 1456 (2006)

    Article  Google Scholar 

  • F. Siepmann, S. Muschert, M.P. Flament, P. Leterme, A. Gayot, Int. J. Pharm. 317, 136 (2006)

    Article  Google Scholar 

  • P.J. Stevens, M. Sekido, R.J. Lee, Pharm. Res. 21, 2153 (2004)

    Article  Google Scholar 

  • B.A.J. Sudimack, R.J. Lee, Adv. Drug Deliv. Rev. 41, 147 (2000)

    Article  Google Scholar 

  • C. Thirunavukkarasu, D. Sakthisekaran, Cell Biochem. Funct. 21, 147 (2003)

    Article  Google Scholar 

  • C.D. Thomson, Analyst 123, 827 (1998)

    Article  Google Scholar 

  • N. Thusu, P.N. Raina, R.K. Johri, Indian J. Exp. Biol. 29, 1124 (1991)

    Google Scholar 

  • V.P. Torchilin, Eur. J. Pharm. Sci. 11(S81) (2000)

  • A.J. Vanisree, C.S. Shyamala Devi, Indian J. Pharmacol. 31(275) (1998)

  • S.P. Vyas, V. Sihorkar, Adv. Drug Deliv. Rev. 43(101) (2000)

  • S. Watson, D. Beydoun, J. Scott, R. Amal, J. Nanoparticle Res. 6, 193 (2004)

    Article  Google Scholar 

  • S.D. Weitman, R.H. Lark, L.R. Coney, D.W. Fort, V. Frasca, V.R. Zurawski Jr., B.A. Kamen, Cancer Res. 52, 3396 (1992)

    Google Scholar 

  • Z. Xu, W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, Y. Li, Int. J. Pharm. 288, 361 (2005)

    Article  Google Scholar 

  • J. Yamamoto, T. Kosuge, T. Takayama, K. Shimada, S. Yamasaki, H. Ozaki, N. Yamaguchi, M. Makuuchi, Br. J. Surg. 83, 1219 (1996)

    Article  Google Scholar 

  • M. Yokoyama, J. Artif. Organs 8, 77 (2005)

    Article  Google Scholar 

  • J. Zang, S. Rana, R.S. Srivastava, R.D.K. Misra, Acta Biomater. 4, 40 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Prof. S. Ramasamy, CSIR Emeritus Scientist, acknowledge the financial support given to him to carry out this work under CSIR Emeritus Scientist Scheme number 21(0714)/08/EMR-II dated 28-04-2008. Mr. G. Devanand Venkatasubbu, CSIR SRF, acknowledge CSIR for giving him SRF. The authors are greatful to Dr. (Mrs).V. Meenakumari M.A, M.Phil, Ph.D, Professor, Department of English, A.P.A college for Women, Palani, India (An autonomous college of Mother Theresa University) for making English correction in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatasubbu, G.D., Ramasamy, S., Reddy, G.P. et al. In vitro and In vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles. Biomed Microdevices 15, 711–726 (2013). https://doi.org/10.1007/s10544-013-9767-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9767-7

Keywords

Navigation