Biomedical Microdevices

, Volume 15, Issue 4, pp 699–709 | Cite as

Towards an optimal and unbiased approach for tumor cell isolation

  • Bhuvanendran Nair Gourikutty SajayEmail author
  • Chia-Pin Chang
  • Hamizah Ahmad
  • Wong Chee Chung
  • Poenar Daniel Puiu
  • Abdur Rub Abdur RahmanEmail author


Our current understanding of clinical significance or the lack thereof of circulating tumor cells (CTCs) is biased by the technology used to isolate these rare cells. Despite the presence of a vast number of academic and commercial technologies, the lack of a standardized and optimized platform has been widely noted. We present a negative enrichment approach, integrating WBC depletion and chemical-free RBC depletion in the same setup without the need for centrifugation, washing or multiple sample handling steps. This approach achieves an average of >90 % recovery of spiked tumor cells and >99 % total WBC depletion in whole blood across multiple cell lines, in a simple and easy-to-use assay. The results presented herein and ongoing improvements aim to fulfill the need for a highly reliable, unbiased, standardized, and optimized CTC isolation platform, using component technologies that are validated for cell isolation.


Circulating tumor cells (CTCs) Cancer cell isolation Metastasis Negative enrichment White blood cell (WBC) depletion 



Circulating tumor cells


White blood cell


Red blood cell


Epithelial to mesenchymal transition


Tetrameric Antibody Complexes


Green florescent protein


Phosphate Buffered Saline


Epithelial cell adhesion molecule



This work was supported by the Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore under the grant number 1031490005. In addition, we greatly appreciate the support from Dr. Chaitanya Kantak for microslit membrane fabrication.


  1. W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G. Tibbe, J.W. Uhr, L.W. Terstappen, Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)CrossRefGoogle Scholar
  2. P. Balasubramanian, L. Yang, J.C. Lang, K.R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, J.J. Chalmers, Confocal images of circulating tumor cells obtained using a methodology and technology that removes normal cells. Mol. Pharm. 6(5), 1402–1408 (2009)CrossRefGoogle Scholar
  3. N. Bednarz-Knoll, C. Alix-Panabières, K. Pantel, Clinical relevance and biology of circulating tumor cells. Breast Cancer Res. 13(20), 228 (2011)CrossRefGoogle Scholar
  4. B. Lu, T. Xu, A. Goldkorn, Y.C. Tai, Parylene membrane slot filter for the capture, analysis and culture of viable circulating tumor cells. MEMS 2010: 23rd IEEE International Conference on Micro Electro Mechanical Systems, 935–938 (2010)Google Scholar
  5. G.T. Budd, Let me do more than count the ways: what circulating tumor cells can tell us about the biology of cancer. Mol. Pharm. 6(5), 1307–1310 (2009)CrossRefGoogle Scholar
  6. J. Chen, J. Li, Y. Sun, Microfluidic approaches for cancer cell detection, characterization, and separation. Lab Chip 12(10), 1753–1767 (2012)CrossRefGoogle Scholar
  7. E.H. Cho, M. Wendel, M. Luttgen, C. Yoshioka, D. Marrinucci, D. Lazar, E. Schram, J. Nieva, L. Bazhenova, A. Morgan, A.H. Ko, W.M. Korn, A. Kolatkar, K. Bethel, P. Kuhn, Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys. Biol. 9(1), 16001 (2012)CrossRefGoogle Scholar
  8. R.J. Cote, 42nd Annual Oak Ridge Conference, Accessed 05 February 2013
  9. M. Cristofanilli, S. Braun, Circulating tumor cells revisited. JAMA 303(11), 1092–1093 (2010)CrossRefGoogle Scholar
  10. S. Denis, M. Keith, S. Kam, S. Alison, H. Richard, T. Don, J. Chunsheng, M. Aladin, T. David, D. Yi, C. Jason, W. Michele, P. Bill, C. Walter, A microfluidic system for the selection of circulating tumor cells that utilizes both affinity and size capture technologies. Cancer Res. 72(8), 2389 (2012)Google Scholar
  11. I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Jänne, Y. Kuang, M. Yanagita, L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer. Res. 31(2), 427–441 (2011)Google Scholar
  12. Y. Fujiwara, O. Yamazaki, S. Takatsuka, R. Kaizaki, T. Inoue, Granulocyte colony-stimulating factor-producing ascending colon cancer as indicated by histopathological findings: report of a case. Osaka City Med. J. 57(2), 79–84 (2011)Google Scholar
  13. N. Gerges, J. Rak, N. Jabado, New technologies for the detection of circulating tumour cells. Br. Med. Bull. 94, 49–64 (2010)CrossRefGoogle Scholar
  14. J.C. Goeminne, T. Guillaume, M. Symann, Pitfalls in the detection of disseminated non-hematological tumor cells. Ann. Oncol. 11(7), 785–792 (2000)CrossRefGoogle Scholar
  15. T.M. Gorges, I. Tinhofer, M. Drosch, L. Roese, T.M. Zollner, T. Krahn, O. Ahsen, Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12, 178 (2012)CrossRefGoogle Scholar
  16. V. Gupta, I. Jafferji, M. Garza, V.O. Melnikova, D.K. Hasegaw, R. Pethig, D.W. Davis, ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics 6(2), 024133 (2012)CrossRefGoogle Scholar
  17. J. Hou, K. Matthew, W. Tim, M. Karen, S. Robert, B. Fiona, D. Caroline, Circulating tumor cells, enumeration and beyond. Cancers 2, 1236–1250 (2010)CrossRefGoogle Scholar
  18. H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Silicon-based microfilters for whole blood cell separation. Biomed. Microdevices 10(2), 251–257 (2008)CrossRefGoogle Scholar
  19. H.J. Kahn, A. Presta, L.Y. Yang, J. Blondal, M. Trudeau, L. Lickley, C. Holloway, D.R. McCready, D. Maclean, A. Marks, Enumeration of circulating tumor cells in the blood of breast cancer patients after filtration enrichment: correlation with disease stage. Breast Cancer Res. Treat. 86(3), 237–247 (2004)CrossRefGoogle Scholar
  20. S. Kasimir-Bauer, O. Hoffmann, D. Wallwiener, R. Kimmig, T. Fehm, Expression of stem cell and epithelial–mesenchymal transition markers in primary breast cancer patients with circulating tumor cells. Breast Cancer Res. 14(1), 15 (2012)CrossRefGoogle Scholar
  21. S.J. Kim, A. Masago, Y. Tamaki, K. Akazawa, F. Tsukamoto, J. Sato, T. Ozawa, Y. Tsujino, S. Noguchi, A novel approach using telomerase-specific replication-selective adenovirus for detection of circulating tumor cells in breast cancer patients. Breast Cancer Res. Treat. 128(3), 765–773 (2011)CrossRefGoogle Scholar
  22. K.C. Kim, J.H. Yook, J. Eisenbraun, B.S. Kim, R. Huber, Quality of life, immunomodulation and safety of adjuvant mistletoe treatment in patients with gastric carcinoma—a randomized, controlled pilot study. BMC Complement. Alternat. Med. 12(172) (2012)Google Scholar
  23. O. Lara, X. Tong, M. Zborowski, J.J. Chalmers, Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp. Hematol. 2(10), 891–904 (2004)CrossRefGoogle Scholar
  24. L.S. Lim, M. Hu, M.C. Huang, W.C. Cheong, A.T. Gan, X.L. Looi, S.M. Leong, E.S. Koay, M.H. Li, Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells. Lab Chip 12(21), 4388–4396 (2012)CrossRefGoogle Scholar
  25. H.K. Lin, S. Zheng, A.J. Williams, M. Balic, S. Groshen, H.I. Scher, M. Fleisher, W. Stadler, R.H. Datar, Y.C. Tai, R.J. Cote, Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16(20), 5011–5018 (2010)CrossRefGoogle Scholar
  26. M. Lustberg, K.R. Jatana, M. Zborowski, J.J. Chalmers, Emerging technologies for CTC detection based on depletion of normal cells. Recent Results Cancer Res. 195, 97–110 (2012)CrossRefGoogle Scholar
  27. D. Marrinucci, K. Bethel, D. Lazar, J. Fisher, E. Huynh, P. Clark, R. Bruce, J. Nieva, P. Kuhn, Cytomorphology of circulating colorectal tumor cells: a small case series. J. Oncol. (2010). doi: 10.1155/2010/861341
  28. S. Meng, D. Tripathy, E.P. Frenkel, S. Shete, E.Z. Naftalis, J.F. Huth, P.D. Beitsch, M. Leitch, S. Hoover, D. Euhus, B. Haley, L. Morrison, T.P. Fleming, D. Herlyn, L.W. Terstappen, T. Fehm, T.F. Tucker, N. Lane, J. Wang, J.W. Uhr, Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004)CrossRefGoogle Scholar
  29. S. Mocellin, D. Hoon, A. Ambrosi, D. Nitti, C.R. Ross, The prognostic value of circulating tumor cells in patients with melanoma: a systematic review and meta-analysis. Clin. Cancer Res. 12(15), 4605–4613 (2006)CrossRefGoogle Scholar
  30. K. Pantel, C. Alix-Panabières, S. Riethdorf, Cancer micrometastases. Nat. Rev. Clin. Oncol. 6(6), 339–351 (2009)CrossRefGoogle Scholar
  31. J.M. Park, J.Y. Lee, J.G. Lee, H. Jeong, J.M. Oh, Y.J. Kim, D. Park, M.S. Kim, H.J. Lee, J.H. Oh, S.S. Lee, W.Y. Lee, N. Huh, Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 84(17), 7400–7407 (2012)CrossRefGoogle Scholar
  32. D.R. Parkinson, N. Dracopoli, B. Gumbs Petty, C. Compton, M. Cristofanilli, A. Deisseroth, D.F. Hayes, G. Kapke, P. Kumar, J.S. Lee, M.C. Liu, R. McCormack, S. Mikulski, L. Nagahara, K. Pantel, S. Pearson-White, E.A. Punnoose, L.T. Roadcap, A.E. Schade, H.I. Scher, C.C. Sigman, G.J. Kelloff, Considerations in the development of circulating tumor cell technology for clinical use. J. Transl. Med. 10, 138 (2012)CrossRefGoogle Scholar
  33. P. Paterlini-Brechot, N.L. Benali, Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253(2), 180–204 (2007)CrossRefGoogle Scholar
  34. E. Racila, D. Euhus, A.J. Weiss, C. Rao, J. McConnell, L.W. Terstappen, J.W. Uhr, Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U. S. A. 95(8), 4589–4594 (1998)CrossRefGoogle Scholar
  35. RI Technologies, Circulating tumour cell (CTC) Technologies—An informative market research update from RI technologies, Accessed 05 February 2013
  36. S. Riethdorf, K. Pantel, Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 75(2), 140–148 (2008)CrossRefGoogle Scholar
  37. A. Rolle, R. Günzel, U. Pachmann, B. Willen, K. Höffken, K. Pachmann, Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: a preliminary report. World J. Surg. Oncol. 3(1), 18 (2005)CrossRefGoogle Scholar
  38. B.G. Sajay, L. Yuxin, C. Chia-Pin, P.D. Puiu, A.R.A. Rahman, Optimization of breast tumor cells isolation efficiency and purity by membrane filtration. World Academy of Science, Engineering and Technology 69, 801–804 (2012)Google Scholar
  39. J. Selinummi, J. Seppala, O. Yli-Harja, J.A. Puhakka, Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39(6), 859–863 (2005)CrossRefGoogle Scholar
  40. STEMCELL Technologies, Human Whole Blood CD45 Depletion kit protocol, Accessed 05 February 2013
  41. Y.F. Sun, X.R. Yang, J. Zhou, S.J. Qiu, J. Fan, Y. Xu, Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J. Cancer Res. Clin. Oncol. 137(8), 1151–1173 (2011)CrossRefGoogle Scholar
  42. S.J. Tan, R.L. Lakshmi, P. Chen, W.T. Lim, L. Yobas, C.T. Lim, Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens. Bioelectron. 26(4), 1701–1705 (2010)CrossRefGoogle Scholar
  43. X. Tong, L. Yang, J.C. Lang, M. Zborowski, J. Chalmers, Application of immunomagnetic cell enrichment in combination with RT-PCR for the detection of rare circulating head and neck tumor cells in human peripheral blood. Cytom. B Clin. Cytom. 72(5), 310–323 (2007)CrossRefGoogle Scholar
  44. G. Vona, A. Sabile, M. Louha, V. Sitruk, S. Romana, K. Schütze, F. Capron, D. Franco, M. Pazzagli, M. Vekemans, B. Lacour, C. Bréchot, P. Paterlini-Bréchot, Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156(1), 57–63 (2000)CrossRefGoogle Scholar
  45. T. Xu, B. Lu, Y.C. Tai, A. Goldkorn, A cancer detection platform which measures telomerase activity from live circulating tumor cells captured on a microfilter. Cancer Res. 70(16), 6420–6426 (2010)CrossRefGoogle Scholar
  46. L. Yang, J.C. Lang, P. Balasubramanian, K.R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, J.J. Chalmers, Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells. Biotechnol. Bioeng. 102(2), 521–534 (2009)CrossRefGoogle Scholar
  47. M. Yu, S. Stott, M. Toner, S. Maheswaran, D.A. Haber, Circulating tumor cells: approaches to isolation and characterization. J Cell. Biol. 192(3), 373–382 (2011)CrossRefGoogle Scholar
  48. X. Zhe, M.L. Cher, R.D. Bonfil, Circulating tumor cells: finding the needle in the haystack. Am. J. Cancer Res. 1(6), 740–751 (2011)Google Scholar
  49. S. Zheng, H.K. Lin, B. Lu, A. Williams, R. Datar, R.J. Cote, Y.C. Tai, 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13(1), 203–213 (2011)CrossRefGoogle Scholar
  50. L. Zhu, X.L. Peh, H.M. Ji, C.Y. Teo, H.H. Feng, W.T. Liu, Cell loss in integrated microfluidic device. Biomed. Microdevices 9(5), 745–750 (2007)CrossRefGoogle Scholar
  51. V. Zieglschmid, C. Hollmann, O. Böcher, Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 42(2), 155–196 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bhuvanendran Nair Gourikutty Sajay
    • 1
    • 2
    Email author
  • Chia-Pin Chang
    • 1
  • Hamizah Ahmad
    • 1
  • Wong Chee Chung
    • 1
  • Poenar Daniel Puiu
    • 2
  • Abdur Rub Abdur Rahman
    • 3
    Email author
  1. 1.BioElectronics Programme, Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.Division of Microelectronics, School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.BioElectronics Programme, Institute of MicroelectronicsA*STAR (Agency for Science, Technology and Research)SingaporeSingapore

Personalised recommendations