Advertisement

Biomedical Microdevices

, Volume 15, Issue 3, pp 465–472 | Cite as

Microfluidic fabrication of cell adhesive chitosan microtubes

  • Jonghyun Oh
  • Keekyoung Kim
  • Sung Wook Won
  • Chaenyung Cha
  • Akhilesh K. Gaharwar
  • Šeila Selimović
  • Hojae Bae
  • Kwang Ho Lee
  • Dong Hwan Lee
  • Sang-Hoon Lee
  • Ali Khademhosseini
Article

Abstract

Chitosan has been used as a scaffolding material in tissue engineering due to its mechanical properties and biocompatibility. With increased appreciation of the effect of micro- and nanoscale environments on cellular behavior, there is increased emphasis on generating microfabricated chitosan structures. Here we employed a microfluidic coaxial flow-focusing system to generate cell adhesive chitosan microtubes of controlled sizes by modifying the flow rates of a chitosan pre-polymer solution and phosphate buffered saline (PBS). The microtubes were extruded from a glass capillary with a 300 μm inner diameter. After ionic crosslinking with sodium tripolyphosphate (TPP), fabricated microtubes had inner and outer diameter ranges of 70–150 μm and 120–185 μm. Computational simulation validated the controlled size of microtubes and cell attachment. To enhance cell adhesiveness on the microtubes, we mixed gelatin with the chitosan pre-polymer solution. During the fabrication of microtubes, fibroblasts suspended in core PBS flow adhered to the inner surface of chitosan-gelatin microtubes. To achieve physiological pH values, we adjusted pH values of chiotsan pre-polymer solution and TPP. In particular, we were able to improve cell viability to 92 % with pH values of 5.8 and 7.4 for chitosan and TPP solution respectively. Cell culturing for three days showed that the addition of the gelatin enhanced cell spreading and proliferation inside the chitosan-gelatin microtubes. The microfluidic fabrication method for ionically crosslinked chitosan microtubes at physiological pH can be compatible with a variety of cells and used as a versatile platform for microengineered tissue engineering.

Keywords

Chitosan-gelatin hydrogel Microfluidic flow-focusing Microtube Cell viability 

Notes

Acknowledgements

This research was funded by National Science Foundation CAREER Award (DMR 0847287), the Office of Naval Research Young National Investigator Award, National Institutes of Health (HL092836, EB008392, DE021468, AR057837, EB012597, HL099073, GM095906), and US Army Corps of Engineers. We thank the following funding sources for support: Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship (K.K.) and Innovative Medical Tech Co. (J.O.). A.K.G. acknowledges financial support through the MIT-Portugal Program (MPP-09Call-Langer-47). J.O., K.K., and S.W.W. contributed equally to this work. J.O., K.K., S.W.W., and A.K. designed the research strategy. J.O., K.K., and S.W.W. conducted the experiments and analyzed the data. C.C. prepared materials and performed cell experiment. A.K.G. measured mechanical properties of chitosan and chitosan-gelatin composite hydrogels. J.O., K.K., S.W.W., A.K.G., C.C., and A.K. wrote the manuscript with comments and editing by S.S., H.B., K.H.L., D.H.L., and S.-H.L..

Supplementary material

10544_2013_9746_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1272 kb)

References

  1. M.W. Anthonsen, O. Smidsrød, Carbohydr. Polymers 26, 303–305 (1995)CrossRefGoogle Scholar
  2. H.C. Arca, S. Senel, FABAD J. Pharm. Sci. 33, 35–49 (2008)Google Scholar
  3. N. Boucard, C. Viton, D. Agay, E. Mari, T. Roger, Y. Chancerelle, A. Domard, Biomaterials 28, 3478–3488 (2007)CrossRefGoogle Scholar
  4. M. Cortes-Morichetti, G. Frati, O. Schussler, J.P. Duong Van Huyen, E. Lauret, J.A. Genovese, A.F. Carpentier, J.C. Chachques, Tissue Eng. 13, 2681–2687 (2007)CrossRefGoogle Scholar
  5. A.J. Domb, N. Kumar, A. Ezra, Biodegradable Polymers in Clinical Use and Clinical Development (Wiley, Hoboken, 2011)CrossRefGoogle Scholar
  6. A. Eser Elcin, Y.M. Elcin, G.D. Pappas, Neurol. Res. 20, 648–54 (1998)Google Scholar
  7. J.K. Francis Suh, H.W.T. Matthew, Biomaterials 21, 2589–2598 (2000)CrossRefGoogle Scholar
  8. J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, J. Blumling, C.-F. Wang, D.S. Kohane, R. Langer, Biomaterials 27, 5259–5267 (2006)CrossRefGoogle Scholar
  9. K. Fuller, A.C. Gallagher, T.J. Chambers, Biochem. Biophys. Res. Commun. 181, 67–73 (1991)CrossRefGoogle Scholar
  10. V. Hamilton, Y. Yuan, D.A. Rigney, B.M. Chesnutt, A.D. Puckett, J.L. Ong, Y. Yang, W.O. Haggard, S.H. Elder, J.D. Bumgardner, Polym. Int. 56, 641–647 (2007)CrossRefGoogle Scholar
  11. Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, S.V. Madihally, Biomaterials 26, 7616–7627 (2005)CrossRefGoogle Scholar
  12. C. Ji, N. Annabi, A. Khademhosseini, F. Dehghani, Acta Biomater. 7, 1653–1664 (2011a)CrossRefGoogle Scholar
  13. C. Ji, A. Khademhosseini, F. Dehghani, Biomaterials 32, 9719–9729 (2011b)CrossRefGoogle Scholar
  14. H. Jin, T.H. Kim, S.-K. Hwang, S.-H. Chang, H.W. Kim, H.K. Anderson, H.-W. Lee, K.-H. Lee, N.H. Colburn, H.-S. Yang, M.-H. Cho, C.S. Cho, Mol. Cancer Ther. 5, 1041–1049 (2006)CrossRefGoogle Scholar
  15. E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.-H. Lee, Nat. Mater. 10, 877–883 (2011)CrossRefGoogle Scholar
  16. Y.M. Kang, B.N. Lee, J.H. Ko, G.H. Kim, K.N. Kang, D.Y. Kim, J.H. Kim, Y.H. Park, H.J. Chun, C.H. Kim, M.S. Kim, Int. J. Mol. Sci. 11, 4140–4148 (2010)CrossRefGoogle Scholar
  17. A. Khademhosseini, R. Langer, J. Borenstein, J. Vacanti, Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006)CrossRefGoogle Scholar
  18. A. Khademhosseini, R. Langer, Biomaterials 28, 5087–5092 (2007)CrossRefGoogle Scholar
  19. S.E. Kim, Y.W. Cho, E.J. Kang, I.C. Kwon, E.B. Lee, J.H. Kim, H. Chung, S.Y. Jeong, Fibers Polym. 2, 64–70 (2001)CrossRefGoogle Scholar
  20. J.E. Lee, K.E. Kim, I.C. Kwon, H.J. Ahn, S.-H. Lee, H. Cho, H.J. Kim, S.C. Seong, M.C. Lee, Biomaterials 25, 4163–4173 (2004)CrossRefGoogle Scholar
  21. K.H. Lee, S.J. Shin, C.-B. Kim, J.K. Kim, Y.W. Cho, B.G. Chung, S.-H. Lee, Lab Chip 10, 1328–1333 (2010)CrossRefGoogle Scholar
  22. T. Takei, N. Kishihara, S. Sakai, K. Kawakami, Biochem. Eng. J. 49, 143–147 (2010)CrossRefGoogle Scholar
  23. B.R. Lee, K.H. Lee, E. Kang, D.S. Kim, S.H. Lee, Biomicrofluidics 5, 9 (2011)Google Scholar
  24. A. Lenlein, A. Sisson, Handbook of Biodegradable Polymers (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  25. F.S. Ligler, B.M. Lingerfelt, R.P. Price, P.E. Schoen, Langmuir 17, 5082–5084 (2001)CrossRefGoogle Scholar
  26. P.B. Malafaya, G.A. Silva, R.L. Reis, Adv. Drug Deliv. Rev. 59, 207–233 (2007)CrossRefGoogle Scholar
  27. J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, R.A. Sousa, S.S. Silva, L.F. Boesel, J.M. Oliveira, T.C. Santos, A.P. Marques, N.M. Neves, R.L. Reis, J. R. Soc. Interface 4, 999–1030 (2007)CrossRefGoogle Scholar
  28. N.R. Mercier, H.R. Costantino, M.A. Tracy, L.J. Bonassar, Biomaterials 26, 1945–1952 (2005)CrossRefGoogle Scholar
  29. K. Miyabe, R. Isogai, J. Chromatogr. A 1218, 6639–6645 (2011)CrossRefGoogle Scholar
  30. S. Natesan, D.G. Baer, T.J. Walters, M. Babu, R.J. Christy, Tissue Eng. Part A 16, 1369–1384 (2010)CrossRefGoogle Scholar
  31. J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Biomaterials 31, 5536–5544 (2010)CrossRefGoogle Scholar
  32. G.D. Nicodemus, S.J. Bryant, Tissue Eng. Part B Rev. 14, 149–165 (2008)CrossRefGoogle Scholar
  33. F. Pati, B. Adhikari, S. Dhara, J. Appl. Polym. Sci. 121, 1550–1557 (2011)CrossRefGoogle Scholar
  34. C. Peniche, W. Argüelles-Monal, H. Peniche, N. Acosta, Macromol. Biosci. 3, 511–520 (2003)CrossRefGoogle Scholar
  35. S.M. Richardson, N. Hughes, J.A. Hunt, A.J. Freemont, J.A. Hoyland, Biomaterials 29, 85–93 (2008)CrossRefGoogle Scholar
  36. S. Senel, S.J. McClure, Adv. Drug Deliv. Rev. 56, 1467–1480 (2004)CrossRefGoogle Scholar
  37. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, T. Cheng, J. Surg. Res. 133, 185–192 (2006)CrossRefGoogle Scholar
  38. V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan, Int. J. Pharm. 274, 1–33 (2004)CrossRefGoogle Scholar
  39. A. Sionkowska, M. Wisniewski, J. Skopinska, G.F. Poggi, E. Marsano, C.A. Maxwell, T.J. Wess, Polym. Degrad. Stab. 91, 3026–3032 (2006)CrossRefGoogle Scholar
  40. W.H. Tan, S. Takeuchi, Adv. Mater. 19, 2696–2701 (2007)CrossRefGoogle Scholar
  41. W.W. Thein-Han, J. Saikhun, C. Pholpramoo, R.D.K. Misra, Y. Kitiyanant, Acta Biomater. 5, 3453–3466 (2009)CrossRefGoogle Scholar
  42. C.G. Williams, A.N. Malik, T.K. Kim, P.N. Manson, J.H. Elisseeff, Biomaterials 26, 1211–1218 (2005)CrossRefGoogle Scholar
  43. C.-H. Yeh, P.-W. Lin, Y.-C. Lin, Microfluid. Nanofluid. 8, 115–121 (2010)CrossRefGoogle Scholar
  44. C.-H. Yeh, P.-W, Lin, Q. Zhao, T.-C. Chou, Y.-C. Lin, Proc. 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China. 904–906 (2009)Google Scholar
  45. L. Zhang, Q. Ao, A. Wang, G. Lu, L. Kong, Y. Gong, N. Zhao, X. Zhang, J. Biomed. Mater. Res. A 77A, 277–284 (2006)CrossRefGoogle Scholar
  46. Y. Zhang, M. Zhang, J. Mater. Sci. Mater. Med. 15, 255–260 (2004)CrossRefGoogle Scholar
  47. R.M. Nerem, A.E. Ensley, Am. J. Transplant. 4, 36–42 (2004)CrossRefGoogle Scholar
  48. J.G. Nemeno-Guanzon, S. Lee, J.R. Berg, Y.H. Jo, J.E. Yeo, B.M. Nam, Y.-G. Koh, J.I. Lee, J. Biomed. Biotechnol. 2012, 1–14 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jonghyun Oh
    • 1
    • 2
  • Keekyoung Kim
    • 1
    • 2
    • 3
  • Sung Wook Won
    • 1
    • 2
  • Chaenyung Cha
    • 1
    • 2
  • Akhilesh K. Gaharwar
    • 1
    • 3
    • 4
  • Šeila Selimović
    • 1
    • 2
  • Hojae Bae
    • 1
    • 2
    • 5
  • Kwang Ho Lee
    • 6
  • Dong Hwan Lee
    • 7
  • Sang-Hoon Lee
    • 8
  • Ali Khademhosseini
    • 1
    • 2
    • 3
  1. 1.Center for Biomedical Engineering, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  2. 2.Harvard-MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBostonUSA
  4. 4.David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulSouth Korea
  6. 6.Department of Advanced Materials Science and EngineeringKangwon National UniversityChuncheonSouth Korea
  7. 7.Department of Mechanical Design EngineeringChonbuk National UniversityJeonjuSouth Korea
  8. 8.Department of Biomedical Engineering, College of Health ScienceKorea UniversitySeoulSouth Korea

Personalised recommendations