A hybrid PDMS-Parylene subdural multi-electrode array

Abstract

In this paper, we report on a cost effective and simple method for fabricating a flexible multi-electrode array for subdural neural recording. The electrode was fabricated using a PDMS-Parylene bilayer to combine the major advantages of both materials. Mechanical and electrical characterizations were performed to confirm functionality of a 16-site electrode array under various flexed/bent conditions. The electrode array was helically wound around a 3 mm diameter cylindrical tube and laid over a 2 cm diameter sphere while maintaining its recording capability. Experimental results showed impedance values between 300 kΩ and 600 kΩ at 1 kHz for 90 μm diameter gold recording sites. Acoustically evoked neural activity was successfully recorded from rat auditory cortex, confirming in vivo functionality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A-D Tech Medical Instruments, Intraoperative Monitoring Subdural Strip Electrodes, http://www.adtechmedical.com/intraoperative-monitoring-subdural-strip-electrodes/. Accessed 18 Jul 2012

  2. D. Armani, C. Liu, N. Aluru, in Twelfth IEEE International Conference on Micro Electro Mechanical Systems (1999)

  3. S.F. Cogan, Annu. Rev. Biomed. Eng. 10, (2008)

  4. DuPont, General Specifications for Kapton® Polyimide Films, http://www2.dupont.com/Kapton/en_US/assets/downloads/pdf/summaryofprop.pdf. Accessed 18 Jul 2012

  5. D.T. Eddington, D.J. Beebe, Biomed. Microdevices 7, 3 (2005)

    Article  Google Scholar 

  6. C. Feger, Polym. Eng. Sci. 29, 5 (1989)

    Article  Google Scholar 

  7. B. Graimann, J.E. Huggins, S.P. Levine, G. Pfurtscheller, IEEE Trans. Biomed. Eng. 51, 6 (2004)

    Article  Google Scholar 

  8. C. Henle, M. Raab, J.G. Cordeiro, S. Doostkam, A. Schulze-Bonhage, T. Stieglitz, J. Rickert, Biomed. Microdevices 13, 1 (2011)

    Article  Google Scholar 

  9. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.-C. Hwang, M.R. Zakin, B. Litt, J.A. Rogers, Nat. Mater. 9, 6 (2010)

    Article  Google Scholar 

  10. K. Ludwig, J.D. Uram, J. Yang, D.C. Martin, D.R. Kipke, J. Neural Eng. 3, 1 (2006)

    Article  Google Scholar 

  11. L.I. Maissel, R. Glang, Handbook of Thin Film Technology, (McGraw-Hill, 1970)

  12. E.M. Maynard, E. Fernandez, R. Normann, J. Neurosci. Methods 97, 2 (2000)

    Article  Google Scholar 

  13. D.R. Nair, R. Burgess, C.C. McIntyre, H. Lüders, Clin. Neurophysiol. 119, 1 (2008)

    Article  Google Scholar 

  14. G.A. Ojemann, Annu. Rev. Med. 48, (1997)

  15. D.C. Rodger, Y.C. Tai, IEEE Engineering in Medicine and Biology Magazine 24, 5 (2005)

    Google Scholar 

  16. P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kipke, IEEE Trans. Biomed. Eng. 48, 3 (2001)

    Article  Google Scholar 

  17. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, J. Neural Eng. 6, 3 (2009)

    Article  Google Scholar 

  18. Specialty Coating Systems, SCS Parylene Properties, http://scscoatings.com/docs/brochures/parylene_properties.pdf. Accessed18 Jul 2012

  19. H. Toda, T. Suzuki, H. Sawahata, K. Majima, Y. Kamitani, I. Hasegawa, NeuroImage 54, 1 (2011)

    Article  Google Scholar 

  20. C.H. Wong, J. Birkett, K. Byth, M. Dexter, E. Somerville, D. Gill, R. Chaseling, M. Fearnside, A. Bleasel, Acta Neurochir. (Wien) 151, 1 (2009)

    Article  Google Scholar 

  21. J.D. Yeager, D.J. Phillips, D.M. Rector, D.F. Bahr, J. Neurosci. Methods 173, 2 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Birck Nanotechnology Center at Purdue University for their help and assistance. We would also like to thank Professor Çagri Savran and Dr. Chun-Li Chang for their assistance with laser micromachining. Partial funding for this work was provided by NIH grant NIBIB-R21-EB 005351-02.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manuel Ochoa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Sup. 1

Nyquist plot of channel impedances for in vivo experiments. (JPEG 119 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ochoa, M., Wei, P., Wolley, A.J. et al. A hybrid PDMS-Parylene subdural multi-electrode array. Biomed Microdevices 15, 437–443 (2013). https://doi.org/10.1007/s10544-013-9743-2

Download citation

Keywords

  • PDMS
  • Parylene
  • Epilepsy
  • Brain Computer Interface (BCI)
  • Subdural electrode
  • ECoG
  • Flexible electrode