Skip to main content

Micromechanical properties of hydrogels measured with MEMS resonant sensors

Abstract

Hydrogels have gained wide usage in a range of biomedical applications because of their biocompatibility and the ability to finely tune their properties, including viscoelasticity. The use of hydrogels on the microscale is increasingly important for the development of drug delivery techniques and cellular microenvironments, though the ability to accurately characterize their micromechanical properties is limited. Here we demonstrate the use of microelectromechanical systems (MEMS) resonant sensors to estimate the properties of poly(ethylene glycol) diacrylate (PEGDA) microstructures over a range of concentrations. These microstructures are integrated on the sensors by deposition using electrohydrodynamic jet printing. Estimated properties agree well with independent measurements made using indentation with atomic force microscopy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. E. A-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.-A. Schoenenberger et al., Biophys J 74, 3 (1998)

    Article  Google Scholar 

  2. K.S. Anseth, C.N. Bowman, L. Brannon-Peppas, Biomaterials 17(17), 1647 (1996)

    Article  Google Scholar 

  3. T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster et al., Nature 446(7139), 1066 (2007)

    Article  Google Scholar 

  4. V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Lab on a Chip 10(16), 2062 (2010)

    Article  Google Scholar 

  5. Chippada U (2009) Non-intrusive Characterization of Properties of Soft Hydrogels, Rutgers, The State University of New Jersey, New Brunswick, NJ

  6. B. Dorvel, B. Reddy, I. Block, P. Mathias, S.E. Clare, B. Cunningham et al., Adv Funct Mater 20(000274044900010), 87 (2010)

    Article  Google Scholar 

  7. J.L. Drury, D.J. Mooney, Biomaterials 24(000185037700002), 4337 (2003)

    Article  Google Scholar 

  8. A. Engler, F. Rehfeldt, S. Sen, D. Discher, Cell Mechanics (Methods in Cell Biology) (Academic, San Diego, 2007), pp. 521–545

    Google Scholar 

  9. Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 1981)

    Google Scholar 

  10. J.M. Gere, Mechanics of Materials, 4th edn. (PWS Pub Co, Boston, 1997)

    Google Scholar 

  11. A. Gupta, D. Akin, R. Bashir, Journal of Vacuum Science & Technology B 22(6), 2785 (2004)

    Google Scholar 

  12. J.H. Jeong, V. Chan, C. Cha, P. Zorlutuna, C. Dyck, K.J. Hsia et al., Adv Mater 24(000298602300005), 58 (2012)

    Article  Google Scholar 

  13. H. Jo, F.D. Blum, Langmuir 15(000079541000032), 2444 (1999)

    Article  Google Scholar 

  14. T. Keim, K. Gall, J Biomed Mater Res Part A 92A(2), 702 (2010)

    Article  Google Scholar 

  15. D. Kim, P. Wong, J. Park, A. Levchenko, Y. Sun, Annu Rev Biomed Eng 11(1), 203 (2009)

    Article  Google Scholar 

  16. Y.M. Kolambkar, K.M. Dupont, J.D. Boerckel, N. Huebsch, D.J. Mooney, D.W. Hutmacher et al., Biomaterials 32(1), 65 (2011)

    Article  Google Scholar 

  17. H.J. Kong, E. Wong, D.J. Mooney, Macromolecules 36(12), 4582 (2003)

    Article  Google Scholar 

  18. N.E. Kurland, Z. Drira, V.K. Yadavalli, Micron 43(2–3), 116 (2012)

    Article  Google Scholar 

  19. J. Lee, J. Jang, D. Akin, C.A. Savran, R. Bashir, Appl Phys Lett 93, 1 (2008)

    Google Scholar 

  20. Q.S. Li, G.Y.H. Lee, C.N. Ong, C.T. Lim, Biochem Biophys Res Commun 374, 4 (2008)

    Article  Google Scholar 

  21. Y. Liang, J. Jeong, R.J. DeVolder, C. Cha, F. Wang, Y.W. Tong et al., Biomaterials 32, 35 (2011)

    Google Scholar 

  22. Millet LJ, Corbin EA, Free R, Park K, Kong H, King WP et al., Small (2012)

  23. S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, I.A.T. Schaap, PLoS One 7, 9 (2012)

    Google Scholar 

  24. S. Nemir, H.N. Hayenga, J.L. West, Biotechnol Bioeng 105, 3 (2010)

    Article  Google Scholar 

  25. G.D. Nicodemus, S.J. Bryant, Tissue Engr Part B-Rev 14, 2 (2008)

    Google Scholar 

  26. V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard, Biomacromolecules 1, 4 (2000)

    Article  Google Scholar 

  27. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay et al., Nat Mater 6, 10 (2007)

    Google Scholar 

  28. K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J.P. Robinson et al., Lab on a Chip 8, 7 (2008)

    Google Scholar 

  29. K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu et al., Proceedings of the National Academy of Science 107, 48 (2010)

    Article  Google Scholar 

  30. K. Park, K. Namjung, D.T. Morisette, N.R. Aluru, R. Bashir, J Microelectromech Syst 21, 3 (2012)

    Google Scholar 

  31. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv Mater 18, 11 (2006)

    Google Scholar 

  32. E.A. Phelps, N. Landazuri, P.M. Thule, W.R. Taylor, A.J. Garcia, Proc National Acad Sci 107, 000275130900011 (2010)

    Google Scholar 

  33. J.H. Pikul, P. Graf, S. Mishra, K. Barton, Y.K. Kim, J.A. Rogers et al., IEEE Sensors J 11, 10 (2011)

    Article  Google Scholar 

  34. I. Sack, G. Buntkowsky, J. Bernarding, J. Braun, J Am Chem Soc 123, 44 (2001)

    Article  Google Scholar 

  35. B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv Mater 21, 000269936900008 (2009)

    Article  Google Scholar 

  36. T.A. Ulrich, E.M.D. Pardo, S. Kumar, Cancer Res 69, 10 (2009)

    Article  Google Scholar 

  37. V. Vadillo-Rodriguez, S.R. Schooling, J.R. Dutcher, J Bacteriol 191, 17 (2009)

    Article  Google Scholar 

  38. J. Yoon, S. Cai, Z. Suo, R.C. Hayward, Soft Matter 6, 23 (2010)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Liang Liang (E. I. du Pont de Nemours and Company) for her help on confocal data analysis. E.A.C. was funded at UIUC from NSF Grant 0965918 IGERT: Cellular and Molecular Mechanics and BioNanotechnology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corbin, E.A., Millet, L.J., Pikul, J.H. et al. Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed Microdevices 15, 311–319 (2013). https://doi.org/10.1007/s10544-012-9730-z

Download citation

Keywords

  • MEMS mass sensor
  • Electrohydrodynamic jet printing
  • Polyethylene glycol
  • Mass-spring-damper system
  • Hydrogel micromechanics