Abstract
Hydrogels have gained wide usage in a range of biomedical applications because of their biocompatibility and the ability to finely tune their properties, including viscoelasticity. The use of hydrogels on the microscale is increasingly important for the development of drug delivery techniques and cellular microenvironments, though the ability to accurately characterize their micromechanical properties is limited. Here we demonstrate the use of microelectromechanical systems (MEMS) resonant sensors to estimate the properties of poly(ethylene glycol) diacrylate (PEGDA) microstructures over a range of concentrations. These microstructures are integrated on the sensors by deposition using electrohydrodynamic jet printing. Estimated properties agree well with independent measurements made using indentation with atomic force microscopy.
This is a preview of subscription content, access via your institution.





References
E. A-Hassan, W.F. Heinz, M.D. Antonik, N.P. D’Costa, S. Nageswaran, C.-A. Schoenenberger et al., Biophys J 74, 3 (1998)
K.S. Anseth, C.N. Bowman, L. Brannon-Peppas, Biomaterials 17(17), 1647 (1996)
T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster et al., Nature 446(7139), 1066 (2007)
V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Lab on a Chip 10(16), 2062 (2010)
Chippada U (2009) Non-intrusive Characterization of Properties of Soft Hydrogels, Rutgers, The State University of New Jersey, New Brunswick, NJ
B. Dorvel, B. Reddy, I. Block, P. Mathias, S.E. Clare, B. Cunningham et al., Adv Funct Mater 20(000274044900010), 87 (2010)
J.L. Drury, D.J. Mooney, Biomaterials 24(000185037700002), 4337 (2003)
A. Engler, F. Rehfeldt, S. Sen, D. Discher, Cell Mechanics (Methods in Cell Biology) (Academic, San Diego, 2007), pp. 521–545
Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, New York, 1981)
J.M. Gere, Mechanics of Materials, 4th edn. (PWS Pub Co, Boston, 1997)
A. Gupta, D. Akin, R. Bashir, Journal of Vacuum Science & Technology B 22(6), 2785 (2004)
J.H. Jeong, V. Chan, C. Cha, P. Zorlutuna, C. Dyck, K.J. Hsia et al., Adv Mater 24(000298602300005), 58 (2012)
H. Jo, F.D. Blum, Langmuir 15(000079541000032), 2444 (1999)
T. Keim, K. Gall, J Biomed Mater Res Part A 92A(2), 702 (2010)
D. Kim, P. Wong, J. Park, A. Levchenko, Y. Sun, Annu Rev Biomed Eng 11(1), 203 (2009)
Y.M. Kolambkar, K.M. Dupont, J.D. Boerckel, N. Huebsch, D.J. Mooney, D.W. Hutmacher et al., Biomaterials 32(1), 65 (2011)
H.J. Kong, E. Wong, D.J. Mooney, Macromolecules 36(12), 4582 (2003)
N.E. Kurland, Z. Drira, V.K. Yadavalli, Micron 43(2–3), 116 (2012)
J. Lee, J. Jang, D. Akin, C.A. Savran, R. Bashir, Appl Phys Lett 93, 1 (2008)
Q.S. Li, G.Y.H. Lee, C.N. Ong, C.T. Lim, Biochem Biophys Res Commun 374, 4 (2008)
Y. Liang, J. Jeong, R.J. DeVolder, C. Cha, F. Wang, Y.W. Tong et al., Biomaterials 32, 35 (2011)
Millet LJ, Corbin EA, Free R, Park K, Kong H, King WP et al., Small (2012)
S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, I.A.T. Schaap, PLoS One 7, 9 (2012)
S. Nemir, H.N. Hayenga, J.L. West, Biotechnol Bioeng 105, 3 (2010)
G.D. Nicodemus, S.J. Bryant, Tissue Engr Part B-Rev 14, 2 (2008)
V. Normand, D.L. Lootens, E. Amici, K.P. Plucknett, P. Aymard, Biomacromolecules 1, 4 (2000)
J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay et al., Nat Mater 6, 10 (2007)
K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J.P. Robinson et al., Lab on a Chip 8, 7 (2008)
K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu et al., Proceedings of the National Academy of Science 107, 48 (2010)
K. Park, K. Namjung, D.T. Morisette, N.R. Aluru, R. Bashir, J Microelectromech Syst 21, 3 (2012)
N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv Mater 18, 11 (2006)
E.A. Phelps, N. Landazuri, P.M. Thule, W.R. Taylor, A.J. Garcia, Proc National Acad Sci 107, 000275130900011 (2010)
J.H. Pikul, P. Graf, S. Mishra, K. Barton, Y.K. Kim, J.A. Rogers et al., IEEE Sensors J 11, 10 (2011)
I. Sack, G. Buntkowsky, J. Bernarding, J. Braun, J Am Chem Soc 123, 44 (2001)
B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv Mater 21, 000269936900008 (2009)
T.A. Ulrich, E.M.D. Pardo, S. Kumar, Cancer Res 69, 10 (2009)
V. Vadillo-Rodriguez, S.R. Schooling, J.R. Dutcher, J Bacteriol 191, 17 (2009)
J. Yoon, S. Cai, Z. Suo, R.C. Hayward, Soft Matter 6, 23 (2010)
Acknowledgments
The authors are thankful to Dr. Liang Liang (E. I. du Pont de Nemours and Company) for her help on confocal data analysis. E.A.C. was funded at UIUC from NSF Grant 0965918 IGERT: Cellular and Molecular Mechanics and BioNanotechnology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Corbin, E.A., Millet, L.J., Pikul, J.H. et al. Micromechanical properties of hydrogels measured with MEMS resonant sensors. Biomed Microdevices 15, 311–319 (2013). https://doi.org/10.1007/s10544-012-9730-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-012-9730-z
Keywords
- MEMS mass sensor
- Electrohydrodynamic jet printing
- Polyethylene glycol
- Mass-spring-damper system
- Hydrogel micromechanics