Biomedical Microdevices

, Volume 15, Issue 2, pp 255–259 | Cite as

hERG drug response measured in droplet bilayers

  • Shiva A. Portonovo
  • Carl S. Salazar
  • Jacob J. Schmidt


We show measurements of the human cardiac potassium ion channel Kv11.1 (hERG) in droplet bilayers incorporated directly from commercial membrane preparations of HEK293 cells. Although we do not obtain ensemble conductance kinetics and rectification observed in patch clamp measurements of hERG, ensemble currents measured in our system showed inhibition dependent on astemizole and E-4031 concentration, with IC50 values similar to those found with patch clamp. The availability of engineered HEK cells expressing a variety of ion channels, combined with the simplicity of the inhibition measurement, suggest that droplet bilayers may have considerable technological potential for determination of ion channel drug potency.


Ion channel Inhibition hERG Lipid bilayer Screening 

Supplementary material

10544_2012_9725_MOESM1_ESM.docx (15.1 mb)
ESM 1(DOCX 15501 kb)


  1. H.C.B. Bayley, A. Heron et al., Droplet Interface Bilayers. Mol. Biosyst. 4, 1191–1208 (2008)Google Scholar
  2. S.G. Brohawn, J. del Marmol et al., Crystal Structure of the Human K2P TRAAK, a Lipid-and Mechano-Sensitive K+ Ion Channel. Sci. STKE 335(6067), 436 (2012)Google Scholar
  3. M. Chachin, Y. Katayama et al., Epinastine, a nonsedating histamine H1 receptor antagonist, has a negligible effect on HERG channel. Eur. J. Pharmacol. 374(3), 457–460 (1999)CrossRefGoogle Scholar
  4. J. Chen, G. Seebohm et al., Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels. Proc. Natl. Acad. Sci. 99(19), 12461–12466 (2002a)CrossRefGoogle Scholar
  5. C.S. Cheng, D. Alderman et al., A high-throughput HERG potassium channel function assay: an old assay with a new look. Drug. Dev. Ind. Pharm. 28(2), 177–191 (2002b)CrossRefGoogle Scholar
  6. P.J.S. Chiu, K.F. Marcoe et al., Validation of a [3H]Astemizole Binding Assay in HEK293 Cells Expressing HERG K+ Channels. J. Pharmacol. Sci. 95(3), 311–319 (2004)CrossRefGoogle Scholar
  7. G.J. Diaz, K. Daniell et al., The [3H]dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: comparison of intact cell and membrane preparations and effects of altering [K+]o. J. Pharm. Toxicol. Methods. 50(3), 187–199 (2004)CrossRefGoogle Scholar
  8. A.M. El-Arabi, C.S. Salazar et al., Ion channel drug potency assay with an artificial bilayer chip. Lab. Chip 12(13), 2409–2413 (2012)CrossRefGoogle Scholar
  9. M. Falconer, F. Smith et al., High-throughput screening for Ion channel modulators. J. Biomol. Screen. 7(5), 460–465 (2002)CrossRefGoogle Scholar
  10. K. Funakoshi, H. Suzuki et al., Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78(24), 8169–8174 (2006)CrossRefGoogle Scholar
  11. J. Golowasch, A. Kirkwood et al., Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J. Exp. Biol. 124(1), 5–13 (1986)Google Scholar
  12. J.C. Hancox, M.J. McPate et al., The hERG potassium channel and hERG screening for drug-induced torsades de pointes. Pharmacol. Ther. 119(2), 118–132 (2008)CrossRefGoogle Scholar
  13. M.A. Holden, D. Needham et al., Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129(27), 8650–8655 (2007)CrossRefGoogle Scholar
  14. T. Ide, T. Kobayashi et al., Lipid bilayers at the gel interface for single ion channel recordings. Anal. Chem. 80(20), 7792–7795 (2008)CrossRefGoogle Scholar
  15. J. Kiehn, A.E. Lacerda et al., Molecular physiology and pharmacology of HERG: single-channel currents and block by dofetilide. Circulation 94(10), 2572–2579 (1996)CrossRefGoogle Scholar
  16. S. Leptihn, J.R. Thompson et al., In vitro reconstitution of eukaryotic Ion channels using droplet interface bilayers. J. Am. Chem. Soc. 133(24), 9370–9375 (2011)CrossRefGoogle Scholar
  17. S. Portonovo, J. Schmidt, Masking apertures enabling automation and solution exchange in sessile droplet lipid bilayers. Biomed. Microdevices 14(1), 187–191 (2012)CrossRefGoogle Scholar
  18. J.L. Poulos, S.A. Portonovo et al., Automatable lipid bilayer formation and ion channel measurement using sessile droplets. J. Phys. Condens. Matter 22, 454105 (2010)CrossRefGoogle Scholar
  19. S.J. Schein, M. Colombini et al., Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J. Membr. Biol. 30(1), 99–120 (1976)CrossRefGoogle Scholar
  20. H. Schindler, U. Quast, Functional acetylcholine receptor from Torpedo marmorata in planar membranes. Proc. Natl. Acad. Sci. 77(5), 3052 (1980)CrossRefGoogle Scholar
  21. H. Schindler, J.P. Rosenbusch, Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc. Natl. Acad. Sci. 75(8), 3751–3755 (1978)CrossRefGoogle Scholar
  22. W. Schmalhofer, A. Swensen et al., A pharmacologically validated, high-capacity, functional thallium flux assay for the human Ether-à-go-go related gene potassium channel. Assay. Drug. Dev. Technol. 8(6), 714–726 (2010)CrossRefGoogle Scholar
  23. X. Tao, R. MacKinnon, Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. J. Mol. Biol. 382(1), 24–33 (2008)CrossRefGoogle Scholar
  24. S.A. Titus, D. Beacham et al., A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal. Biochem. 394(1), 30–38 (2009)CrossRefGoogle Scholar
  25. H. Wulff, N.A. Castle et al., Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug. Discov. 8(12), 982–1001 (2009)CrossRefGoogle Scholar
  26. C. Yuan, R.J. O’Connell et al., Bilayer thickness modulates the conductance of the BK channel in model membranes. Biophys. J. 86(6), 3620–3633 (2004)CrossRefGoogle Scholar
  27. M. Zagnoni, M. Sandison et al., Bilayer lipid membranes from falling droplets. Anal. Bioanal. Chem. 393(6), 1601–1605 (2009)CrossRefGoogle Scholar
  28. Zhang Y., T. Phung et al., “hERG ion channel pharmacology: cell membrane liposomes in porous-supported lipid bilayers compared with whole-cell patch-clamping.” Eur. Biophys. J. 1–10 (2012)Google Scholar
  29. Z. Zhou, Q. Gong et al., Properties of HERG Channels Stably Expressed in HEK 293 Cells Studied at Physiological Temperature. Biophys. J. 74(1), 230–241 (1998)CrossRefGoogle Scholar
  30. A. Zou, M.E. Curran et al., Single HERG delayed rectifier K+ channels expressed in Xenopus oocytes. Am. J. Physiol. Heart Circ. Physiol. 272(3), H1309–H1314 (1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Shiva A. Portonovo
    • 1
  • Carl S. Salazar
    • 1
  • Jacob J. Schmidt
    • 1
  1. 1.Department of BioengineeringUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations