Biomedical Microdevices

, Volume 15, Issue 4, pp 635–643 | Cite as

Proliferation and migration of tumor cells in tapered channels

  • Yuan Wan
  • Deepika Tamuly
  • Peter B. Allen
  • Young-tae Kim
  • Robert Bachoo
  • Andrew D. Ellington
  • Samir M. Iqbal
Article

Abstract

Tumor cells depict two deviant tendencies; over-proliferation and vigorous migration. A tapered channel device is designed and fabricated for in vitro studies. We report inhibited proliferation and migration of human glioblastoma (hGBM) cells when exposed to an aptamer that is known to bind epidermal growth factor receptors (EGFR). The device is integrated with controlled ambient and microscope for providing real-time and quantitative characterization of the tumor cell behavior. The results show that hGBM cells loose proliferation and motility when exposed to the anti-EGFR aptamer. The aptamer directly inhibits and blocks EGF-induced EGFR phosphorylation. This also reduces the ability of cells to remodel their internal structure for invasion through narrow constrictions. This provides a framework for possible studies on efficacy of other inhibiting molecules.

Keywords

Inhibition of cancer Microfluidics Tapered channels Aggressive migration 

References

  1. M. Aubert, M. Badoual et al., A model for glioma cell migration on collagen and astrocytes. J. R. Soc. Interface 5(18), 75–83 (2008)CrossRefGoogle Scholar
  2. G. Carpenter, The biochemistry and physiology of the receptor-kinase for epidermal growth factor. Mol. Cell. Endocrinol. 31(1), 1–19 (1983)CrossRefGoogle Scholar
  3. G. Carpenter, S. Cohen, Epidermal growth factor. Annu. Rev. Biochem. 48, 193–216 (1979)CrossRefGoogle Scholar
  4. S. Chung, R. Sudo et al., Microfluidic platforms for studies of angiogenesis, cell migration, and cell-cell interactions. Ann. Biomed. Eng. 38(3), 1164–1177 (2010)CrossRefGoogle Scholar
  5. A. Citri, Y. Yarden, EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7(7), 505–516 (2006)CrossRefGoogle Scholar
  6. T. Demuth, M.E. Berens, Molecular mechanisms of glioma cell migration and invasion. J. Neurooncol. 70(2), 217–228 (2004)CrossRefGoogle Scholar
  7. S.A. Enam, M.L. Rosenblum et al., Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectin-positive mesenchymal cell processes. Neurosurgery 42(3), 599–607 (1998)CrossRefGoogle Scholar
  8. O. Engebraaten, R. Bjerkvig et al., Effects of egf, bfgf, ngf and pdgf (bb) on cell proliferative, migratory and invasive capacities of human brain tumour biopsies in vitro. Int. J. Cancer 53(2), 209–214 (1993)CrossRefGoogle Scholar
  9. D.R. Friedlander, D. Zagzag et al., Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor type and grade and involves alphaV and beta1 integrins. Cancer Res. 56(8), 1939–1947 (1996)Google Scholar
  10. Y. Fukushima, T. Ohnishi et al., Integrin alpha3&beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int. J. Cancer 76(1), 63–72 (1998)CrossRefGoogle Scholar
  11. A. Giese, L. Kluwe et al., Migration of human glioma cells on myelin. Neurosurgery 38(4), 755–764 (1996)CrossRefGoogle Scholar
  12. S. Hamada, S. Fujita, DAPI staining improved for quantitative cytofluorometry. Histochemistry 79(2), 219–226 (1983)CrossRefGoogle Scholar
  13. C.R. Hauck, D.J. Sieg et al., Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res. 61(19), 7079–7090 (2001)Google Scholar
  14. E.C. Holland, Glioblastoma multiforme: the terminator. Proc. Natl. Acad. Sci. USA 97(12), 6242–6244 (2000)CrossRefGoogle Scholar
  15. R.N. Jorissen, F. Walker et al., Epidermal growth factor receptor: mechanisms of activation and signalling. Exp. Cell Res. 284(1), 31–53 (2003)CrossRefGoogle Scholar
  16. N. Koshikawa, G. Giannelli et al., Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J. Cell Biol. 148(3), 615–624 (2000)CrossRefGoogle Scholar
  17. D. Krex, B. Klink et al., Long-term survival with glioblastoma multiforme. Brain 130(10), 2596–2606 (2007)CrossRefGoogle Scholar
  18. S.S. Lakka, C.S. Gondi et al., Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via rna interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23(27), 4681–4689 (2004)CrossRefGoogle Scholar
  19. N. Li, H.H. Nguyen et al., Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One 6(6), e20299 (2011)CrossRefGoogle Scholar
  20. Q.C. Liang, H. Xiong et al., Inhibition of transcription factor STAT5b suppresses proliferation, induces G1 cell cycle arrest and reduces tumor cell invasion in human glioblastoma multiforme cells. Cancer Lett. 273(1), 164–171 (2009)CrossRefGoogle Scholar
  21. J.C. Loftus, Z. Yang et al., The PKY2 FERM domain as a target to inhibit glioma migration. Mol. Cancer Ther. 8(6), 1505–1514 (2009)CrossRefGoogle Scholar
  22. I.A.J. Lorimer, A. Keppler-Hafkemeyer et al., Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc. Natl. Acad. Sci. USA 93(25), 14815–14820 (1996)CrossRefGoogle Scholar
  23. M. Lund-Johansen, R. Bjerkvig et al., Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50(18), 6039–6044 (1990)Google Scholar
  24. J. Mendelsohn, EGF receptors as a target for cancer therapy. Trans. Am. Clin. Climatol. Assoc. 115, 249–253 (2004)Google Scholar
  25. S.E. Osborne, I. Matsumura et al., Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr. Opin. Chem. Biol. 1(1), 5–9 (1997)CrossRefGoogle Scholar
  26. J.E. Perry, M.E. Grossmann et al., Epidermal growth factor induces cyclin d1 in a human prostate cancer cell line. Prostate 35(2), 117–124 (1998)CrossRefGoogle Scholar
  27. M. Tamura, J. Gu et al., Tumor suppressor pten inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130CAS. Cancer Res. 59(2), 442–449 (1999)Google Scholar
  28. B.B. Tysnes, L.F. Larsen et al., Stimulation of glioma-cell migration by laminin and inhibition by anti-alpha3 and anti-beta1 integrin antibodies. Int. J. Cancer 67(6), 777–784 (1996)CrossRefGoogle Scholar
  29. Y. Wan, Y.T. Kim et al., Surface immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 70(22), 9371–9380 (2010)CrossRefGoogle Scholar
  30. Y. Wan, J. Tan et al., Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J. Phys. Chem. B 115(47), 13891–23896 (2011)CrossRefGoogle Scholar
  31. M. Westphal, M. Brunken et al., Growth factors in cultured human glioma cells: differential effects of FGF, EGF and PDGF. Cancer Lett. 38(3), 283–296 (1988)CrossRefGoogle Scholar
  32. J.R. Woodburn, The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 82(2–3), 241–250 (1999)CrossRefGoogle Scholar
  33. D. Zink, T. Cremer et al., Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 102(2), 241–251 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yuan Wan
    • 1
    • 2
    • 3
    • 10
  • Deepika Tamuly
    • 2
  • Peter B. Allen
    • 4
  • Young-tae Kim
    • 2
    • 3
  • Robert Bachoo
    • 5
    • 6
    • 7
  • Andrew D. Ellington
    • 4
  • Samir M. Iqbal
    • 1
    • 2
    • 3
    • 8
    • 9
  1. 1.Nano-Bio LabUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Nanotechnology Research and Education CenterUniversity of Texas at ArlingtonArlingtonUSA
  4. 4.Institute for Cell and Molecular BiologyUniversity of Texas at AustinAustinUSA
  5. 5.Annette G. Strauss Center for Neuro-OncologyUniversity of Texas Southwestern Medical CenterDallasUSA
  6. 6.Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasUSA
  7. 7.Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUSA
  8. 8.Department of Electrical EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  9. 9.Joint Graduate Committee of Bioengineering Program, University of Texas at Arlington and University of Texas Southwestern Medical Center at DallasUniversity of Texas at ArlingtonArlingtonUSA
  10. 10.Mawson InstituteUniversity of South AustraliaAdelaideAustralia

Personalised recommendations