Abstract
Combining the power of immunomagnetic assay and microfluidic microchip operations, we successfully detected rare CTCs from clinical blood samples. The microfluidic system is operated in a flip-flop mode, where a computer-controlled rotational holder with an array of microfluidic chips inverts the microchannels. We have demonstrated both theoretically and experimentally that the direction of red blood cell (RBC) sedimentation with regards to the magnetic force required for cell separation is important for capture efficiency, throughput, and purity. The flip-flop operation reduces the stagnation of RBCs and non-specific binding on the capture surface by alternating the direction of the magnetic field with respect to gravity. The developed immunomagnetic microchip-based screening system exhibits high capture rates (more than 90%) for SkBr3, PC3, and Colo205 cell lines in spiked screening experiments and successfully isolates CTCs from patient blood samples. The proposed motion controlled microchip-based immunomagnetic system shows great promise as a clinical tool for cancer diagnosis and prognosis.
This is a preview of subscription content,
to check access.







References
J.W. Uhr, K. Pantel, PNAS 108, 12396–12400 (2011)
T. Fehm, A. Sagalowsky, E. Clifford, P. Beitsch, H. Saboorian, D. Euhus, S. Meng, L. Morrison, T. Tucker, N. Lane, B.M. Ghadimi, K. Heselmeyer-Haddad, T. Ried, C. Rao, J.W. Uhr, Clin. Cancer Res. 8, 2073–2084 (2002)
W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G.J. Tibbe, J.W. Uhr, L.W. Terstappen, Clin. Cancer Res. 10, 6897–6904 (2004)
G.T. Budd, M. Cristofanilli, M.J. Ellis, A. Stopeck, E. Borden, M.C. Miller, J. Matera, M. Repollet, G.V. Doyle, L.W.M.M. Terstappen, D.F. Hayes, Clin. Cancer Res. 12, 6403–6409 (2006)
P. Paterlini-Brechot, N.L. Benali, Science 253, 180–204 (2007)
B. Mostert, S. Sleijfer, J.A. Foekens, J.W.S. Gratama, Cancer Treat Rev 35, 463–474 (2009)
M.C. Liu, P.G. Shields, R.D. Warren, P. Cohen, M. Wilkinson, Y.L. Ottaviano, S.B. Rao, J. Eng-Wong, F. Seillier-Moiseiwitsch, A.M. Noone, C. Isaacs, J. Clin. Oncol. 27, 5153–5159 (2009)
N. Bao, T.T. Le, J.X. Cheng, C. Lu, Integr. Biol. 2, 113–120 (2010)
K. Jocelyn, Science 327, 1072–1074 (2010)
M.C. Miller, G.V. Doyle, L.W.M.M. Terstappen, Journal of Oncology 2010, 1–8 (2010)
S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber and M. Toner, 450, pp. 1235–1239 (2007)
A.H. Talasaza, A.A. Powellc, D.E. Huberb, J.G. Berbeeb, K.-H. Rohd, W. Yud, W. Xiaob, M.M. Davisd, R.F. Peasea, M.N. Mindrinosb, S.S. Jeffrey, R.W. Davis, PNAS 106, 3970–3975 (2009)
S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd Jr., A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaranc, D.A. Haber, M. Toner, PNAS 107, 18392–18397 (2010)
M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, T. Matsunaga, Anal. Chem. 82, 6629–6635 (2010)
J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, X. Jiang, Lab on a Chip (2012)
A.A. Bhagat, H.W. Hou, L.D. Li, C.T. Lim, J. Han, Lab on a Chip 11, 1870–1878 (2011)
S.C. Hur, A.J. Mach, D.D. Carlo, AIP Biomicrofluidics 5, 022206 (2011)
S. Zhang, H.K. Lin, and B. Lu, Biomed Microdevices, pp. 203–213 (2011)
C.W. Yung, J. Fiering, A.J. Mueller, D.E. Ingber, Lab on a Chip 9, 1171–1177 (2009)
M.D. Estes, B. Ouyang, S.M. Ho, C.H. Ahn, J. Micromech. Microeng. 19, 095015 (2009)
J.H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D.E. Ingber, Lab on a Chip 12, 2175–2181 (2012)
T. Zhu, R. Cheng, S.A. Lee, E. Rajaraman, M.A. Eiteman, T.D. Querec, E.R. Unger, L. Mao, Microfluid Nnaofluid (2012)
M. Hossain, Y. Luo, Z. Sun, C. Wang, M. Zhang, H. Fu, Y. Qiao, M. Su, Biosens. Bioelectron. 1, 348–354 (2012)
K. Hoshino, Y.Y. Huang, N. Lane, M. Huebhman, J.W. Uhr, E.P. Frenkel, X.J. Zhang, Lab on a Chip 11, 3449–3457 (2011)
K. Hoshino, P. Chen, Y.Y. Huang, X.J. Zhang, J. Anal. Chem. 10, 4292–4299 (2012)
V.J. Sieben, C.S. Debes Marun, P.M. Pilarski, G.V. Kaigala, L.M. Pilarski, C.J. Backhouse, IET Nanobiotechnol 1, 27–35 (2007)
D.R. Shaffer, M.A. Leversha, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, B. Gu, A. Anand, K. Smith, P. Maslak, G.V. Doyle, L.W.M.M. Terstappen, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 13, 2023–2029 (2007)
J.F. Swennenhuis, A.G. Tibbe, R. Levink, R.C. Sipkema, L.W. Terstappen, Cytometry A 75, 520–527 (2009)
M.A. Leversha, J. Han, Z. Asgari, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 15, 2091–2097 (2009)
A.B. Al-Mehdi, K. Tozawa, A.B. Fisher, L. Shientag, A. Lee, R.J. Muschel, Nat. Med. 6, 100–102 (2000)
P. Uva, A. Lahm, A. Sbardellati, A. Grigoriadis, T. Andrew, E.D. Rinaldis, PLoS One 5, 11 (2010)
D.C. Lazar, E.H. Cho, M.S. Luttgen, T.J. Metzner, M.L. Uson, M. Torrey, M.E. Gross, P. Kuhn, Phys. Biol. 9, 7 (2012)
Acknowledgements
We thank Dr. Hirofumi Tanaka of the University of Texas at Austin for his help in the measurements of blood viscosities and Dr. Rodney S. Ruoff’s laboratory of the University of Texas at Austin for his help in the COMSOL simulation. We also want to thank Microelectronics Research Center (MRC) and Center for Nano- and Molecular Science (CNM) at UT Austin for providing facilities for microchip fabrication. We are grateful for the financial support from National Institute of Health (NIH) National Cancer Institute (NCI) Cancer Diagnosis Program under the grant 1R01CA139070.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Huang, Yy., Hoshino, K., Chen, P. et al. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed Microdevices 15, 673–681 (2013). https://doi.org/10.1007/s10544-012-9718-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-012-9718-8