Skip to main content
Log in

Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system

Biomedical Microdevices Aims and scope Submit manuscript

Cite this article

Abstract

Combining the power of immunomagnetic assay and microfluidic microchip operations, we successfully detected rare CTCs from clinical blood samples. The microfluidic system is operated in a flip-flop mode, where a computer-controlled rotational holder with an array of microfluidic chips inverts the microchannels. We have demonstrated both theoretically and experimentally that the direction of red blood cell (RBC) sedimentation with regards to the magnetic force required for cell separation is important for capture efficiency, throughput, and purity. The flip-flop operation reduces the stagnation of RBCs and non-specific binding on the capture surface by alternating the direction of the magnetic field with respect to gravity. The developed immunomagnetic microchip-based screening system exhibits high capture rates (more than 90%) for SkBr3, PC3, and Colo205 cell lines in spiked screening experiments and successfully isolates CTCs from patient blood samples. The proposed motion controlled microchip-based immunomagnetic system shows great promise as a clinical tool for cancer diagnosis and prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • J.W. Uhr, K. Pantel, PNAS 108, 12396–12400 (2011)

    Article  Google Scholar 

  • T. Fehm, A. Sagalowsky, E. Clifford, P. Beitsch, H. Saboorian, D. Euhus, S. Meng, L. Morrison, T. Tucker, N. Lane, B.M. Ghadimi, K. Heselmeyer-Haddad, T. Ried, C. Rao, J.W. Uhr, Clin. Cancer Res. 8, 2073–2084 (2002)

    Google Scholar 

  • W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G.J. Tibbe, J.W. Uhr, L.W. Terstappen, Clin. Cancer Res. 10, 6897–6904 (2004)

    Article  Google Scholar 

  • G.T. Budd, M. Cristofanilli, M.J. Ellis, A. Stopeck, E. Borden, M.C. Miller, J. Matera, M. Repollet, G.V. Doyle, L.W.M.M. Terstappen, D.F. Hayes, Clin. Cancer Res. 12, 6403–6409 (2006)

    Article  Google Scholar 

  • P. Paterlini-Brechot, N.L. Benali, Science 253, 180–204 (2007)

    Google Scholar 

  • B. Mostert, S. Sleijfer, J.A. Foekens, J.W.S. Gratama, Cancer Treat Rev 35, 463–474 (2009)

    Article  Google Scholar 

  • M.C. Liu, P.G. Shields, R.D. Warren, P. Cohen, M. Wilkinson, Y.L. Ottaviano, S.B. Rao, J. Eng-Wong, F. Seillier-Moiseiwitsch, A.M. Noone, C. Isaacs, J. Clin. Oncol. 27, 5153–5159 (2009)

    Article  Google Scholar 

  • N. Bao, T.T. Le, J.X. Cheng, C. Lu, Integr. Biol. 2, 113–120 (2010)

    Article  Google Scholar 

  • K. Jocelyn, Science 327, 1072–1074 (2010)

    Article  Google Scholar 

  • M.C. Miller, G.V. Doyle, L.W.M.M. Terstappen, Journal of Oncology 2010, 1–8 (2010)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber and M. Toner, 450, pp. 1235–1239 (2007)

  • A.H. Talasaza, A.A. Powellc, D.E. Huberb, J.G. Berbeeb, K.-H. Rohd, W. Yud, W. Xiaob, M.M. Davisd, R.F. Peasea, M.N. Mindrinosb, S.S. Jeffrey, R.W. Davis, PNAS 106, 3970–3975 (2009)

    Article  Google Scholar 

  • S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd Jr., A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaranc, D.A. Haber, M. Toner, PNAS 107, 18392–18397 (2010)

    Article  Google Scholar 

  • M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, T. Matsunaga, Anal. Chem. 82, 6629–6635 (2010)

    Article  Google Scholar 

  • J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, X. Jiang, Lab on a Chip (2012)

  • A.A. Bhagat, H.W. Hou, L.D. Li, C.T. Lim, J. Han, Lab on a Chip 11, 1870–1878 (2011)

    Article  Google Scholar 

  • S.C. Hur, A.J. Mach, D.D. Carlo, AIP Biomicrofluidics 5, 022206 (2011)

    Article  Google Scholar 

  • S. Zhang, H.K. Lin, and B. Lu, Biomed Microdevices, pp. 203–213 (2011)

  • C.W. Yung, J. Fiering, A.J. Mueller, D.E. Ingber, Lab on a Chip 9, 1171–1177 (2009)

    Article  Google Scholar 

  • M.D. Estes, B. Ouyang, S.M. Ho, C.H. Ahn, J. Micromech. Microeng. 19, 095015 (2009)

    Article  Google Scholar 

  • J.H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D.E. Ingber, Lab on a Chip 12, 2175–2181 (2012)

    Article  Google Scholar 

  • T. Zhu, R. Cheng, S.A. Lee, E. Rajaraman, M.A. Eiteman, T.D. Querec, E.R. Unger, L. Mao, Microfluid Nnaofluid (2012)

  • M. Hossain, Y. Luo, Z. Sun, C. Wang, M. Zhang, H. Fu, Y. Qiao, M. Su, Biosens. Bioelectron. 1, 348–354 (2012)

    Article  Google Scholar 

  • K. Hoshino, Y.Y. Huang, N. Lane, M. Huebhman, J.W. Uhr, E.P. Frenkel, X.J. Zhang, Lab on a Chip 11, 3449–3457 (2011)

    Article  Google Scholar 

  • K. Hoshino, P. Chen, Y.Y. Huang, X.J. Zhang, J. Anal. Chem. 10, 4292–4299 (2012)

    Article  Google Scholar 

  • V.J. Sieben, C.S. Debes Marun, P.M. Pilarski, G.V. Kaigala, L.M. Pilarski, C.J. Backhouse, IET Nanobiotechnol 1, 27–35 (2007)

    Article  Google Scholar 

  • D.R. Shaffer, M.A. Leversha, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, B. Gu, A. Anand, K. Smith, P. Maslak, G.V. Doyle, L.W.M.M. Terstappen, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 13, 2023–2029 (2007)

    Article  Google Scholar 

  • J.F. Swennenhuis, A.G. Tibbe, R. Levink, R.C. Sipkema, L.W. Terstappen, Cytometry A 75, 520–527 (2009)

    Article  Google Scholar 

  • M.A. Leversha, J. Han, Z. Asgari, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 15, 2091–2097 (2009)

    Article  Google Scholar 

  • A.B. Al-Mehdi, K. Tozawa, A.B. Fisher, L. Shientag, A. Lee, R.J. Muschel, Nat. Med. 6, 100–102 (2000)

    Article  Google Scholar 

  • P. Uva, A. Lahm, A. Sbardellati, A. Grigoriadis, T. Andrew, E.D. Rinaldis, PLoS One 5, 11 (2010)

    Article  Google Scholar 

  • D.C. Lazar, E.H. Cho, M.S. Luttgen, T.J. Metzner, M.L. Uson, M. Torrey, M.E. Gross, P. Kuhn, Phys. Biol. 9, 7 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hirofumi Tanaka of the University of Texas at Austin for his help in the measurements of blood viscosities and Dr. Rodney S. Ruoff’s laboratory of the University of Texas at Austin for his help in the COMSOL simulation. We also want to thank Microelectronics Research Center (MRC) and Center for Nano- and Molecular Science (CNM) at UT Austin for providing facilities for microchip fabrication. We are grateful for the financial support from National Institute of Health (NIH) National Cancer Institute (NCI) Cancer Diagnosis Program under the grant 1R01CA139070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John X.J. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, Yy., Hoshino, K., Chen, P. et al. Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system. Biomed Microdevices 15, 673–681 (2013). https://doi.org/10.1007/s10544-012-9718-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9718-8

Keywords

Navigation