Advertisement

Biomedical Microdevices

, Volume 15, Issue 4, pp 673–681 | Cite as

Immunomagnetic nanoscreening of circulating tumor cells with a motion controlled microfluidic system

  • Yu-yen Huang
  • Kazunori Hoshino
  • Peng Chen
  • Chun-hsien Wu
  • Nancy Lane
  • Michael Huebschman
  • Huaying Liu
  • Konstantin Sokolov
  • Jonathan W. Uhr
  • Eugene P. Frenkel
  • John X.J. Zhang
Article

Abstract

Combining the power of immunomagnetic assay and microfluidic microchip operations, we successfully detected rare CTCs from clinical blood samples. The microfluidic system is operated in a flip-flop mode, where a computer-controlled rotational holder with an array of microfluidic chips inverts the microchannels. We have demonstrated both theoretically and experimentally that the direction of red blood cell (RBC) sedimentation with regards to the magnetic force required for cell separation is important for capture efficiency, throughput, and purity. The flip-flop operation reduces the stagnation of RBCs and non-specific binding on the capture surface by alternating the direction of the magnetic field with respect to gravity. The developed immunomagnetic microchip-based screening system exhibits high capture rates (more than 90%) for SkBr3, PC3, and Colo205 cell lines in spiked screening experiments and successfully isolates CTCs from patient blood samples. The proposed motion controlled microchip-based immunomagnetic system shows great promise as a clinical tool for cancer diagnosis and prognosis.

Keywords

Circulating tumor cells (CTCs) Immunomagnetic assay Microfluidic chip Gravity Capture efficiency Purity Fluorescent imaging 

Notes

Acknowledgements

We thank Dr. Hirofumi Tanaka of the University of Texas at Austin for his help in the measurements of blood viscosities and Dr. Rodney S. Ruoff’s laboratory of the University of Texas at Austin for his help in the COMSOL simulation. We also want to thank Microelectronics Research Center (MRC) and Center for Nano- and Molecular Science (CNM) at UT Austin for providing facilities for microchip fabrication. We are grateful for the financial support from National Institute of Health (NIH) National Cancer Institute (NCI) Cancer Diagnosis Program under the grant 1R01CA139070.

References

  1. J.W. Uhr, K. Pantel, PNAS 108, 12396–12400 (2011)CrossRefGoogle Scholar
  2. T. Fehm, A. Sagalowsky, E. Clifford, P. Beitsch, H. Saboorian, D. Euhus, S. Meng, L. Morrison, T. Tucker, N. Lane, B.M. Ghadimi, K. Heselmeyer-Haddad, T. Ried, C. Rao, J.W. Uhr, Clin. Cancer Res. 8, 2073–2084 (2002)Google Scholar
  3. W.J. Allard, J. Matera, M.C. Miller, M. Repollet, M.C. Connelly, C. Rao, A.G.J. Tibbe, J.W. Uhr, L.W. Terstappen, Clin. Cancer Res. 10, 6897–6904 (2004)CrossRefGoogle Scholar
  4. G.T. Budd, M. Cristofanilli, M.J. Ellis, A. Stopeck, E. Borden, M.C. Miller, J. Matera, M. Repollet, G.V. Doyle, L.W.M.M. Terstappen, D.F. Hayes, Clin. Cancer Res. 12, 6403–6409 (2006)CrossRefGoogle Scholar
  5. P. Paterlini-Brechot, N.L. Benali, Science 253, 180–204 (2007)Google Scholar
  6. B. Mostert, S. Sleijfer, J.A. Foekens, J.W.S. Gratama, Cancer Treat Rev 35, 463–474 (2009)CrossRefGoogle Scholar
  7. M.C. Liu, P.G. Shields, R.D. Warren, P. Cohen, M. Wilkinson, Y.L. Ottaviano, S.B. Rao, J. Eng-Wong, F. Seillier-Moiseiwitsch, A.M. Noone, C. Isaacs, J. Clin. Oncol. 27, 5153–5159 (2009)CrossRefGoogle Scholar
  8. N. Bao, T.T. Le, J.X. Cheng, C. Lu, Integr. Biol. 2, 113–120 (2010)CrossRefGoogle Scholar
  9. K. Jocelyn, Science 327, 1072–1074 (2010)CrossRefGoogle Scholar
  10. M.C. Miller, G.V. Doyle, L.W.M.M. Terstappen, Journal of Oncology 2010, 1–8 (2010)CrossRefGoogle Scholar
  11. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber and M. Toner, 450, pp. 1235–1239 (2007)Google Scholar
  12. A.H. Talasaza, A.A. Powellc, D.E. Huberb, J.G. Berbeeb, K.-H. Rohd, W. Yud, W. Xiaob, M.M. Davisd, R.F. Peasea, M.N. Mindrinosb, S.S. Jeffrey, R.W. Davis, PNAS 106, 3970–3975 (2009)CrossRefGoogle Scholar
  13. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd Jr., A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaranc, D.A. Haber, M. Toner, PNAS 107, 18392–18397 (2010)CrossRefGoogle Scholar
  14. M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, T. Matsunaga, Anal. Chem. 82, 6629–6635 (2010)CrossRefGoogle Scholar
  15. J. Sun, M. Li, C. Liu, Y. Zhang, D. Liu, W. Liu, G. Hu, X. Jiang, Lab on a Chip (2012)Google Scholar
  16. A.A. Bhagat, H.W. Hou, L.D. Li, C.T. Lim, J. Han, Lab on a Chip 11, 1870–1878 (2011)CrossRefGoogle Scholar
  17. S.C. Hur, A.J. Mach, D.D. Carlo, AIP Biomicrofluidics 5, 022206 (2011)CrossRefGoogle Scholar
  18. S. Zhang, H.K. Lin, and B. Lu, Biomed Microdevices, pp. 203–213 (2011)Google Scholar
  19. C.W. Yung, J. Fiering, A.J. Mueller, D.E. Ingber, Lab on a Chip 9, 1171–1177 (2009)CrossRefGoogle Scholar
  20. M.D. Estes, B. Ouyang, S.M. Ho, C.H. Ahn, J. Micromech. Microeng. 19, 095015 (2009)CrossRefGoogle Scholar
  21. J.H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D.E. Ingber, Lab on a Chip 12, 2175–2181 (2012)CrossRefGoogle Scholar
  22. T. Zhu, R. Cheng, S.A. Lee, E. Rajaraman, M.A. Eiteman, T.D. Querec, E.R. Unger, L. Mao, Microfluid Nnaofluid (2012)Google Scholar
  23. M. Hossain, Y. Luo, Z. Sun, C. Wang, M. Zhang, H. Fu, Y. Qiao, M. Su, Biosens. Bioelectron. 1, 348–354 (2012)CrossRefGoogle Scholar
  24. K. Hoshino, Y.Y. Huang, N. Lane, M. Huebhman, J.W. Uhr, E.P. Frenkel, X.J. Zhang, Lab on a Chip 11, 3449–3457 (2011)CrossRefGoogle Scholar
  25. K. Hoshino, P. Chen, Y.Y. Huang, X.J. Zhang, J. Anal. Chem. 10, 4292–4299 (2012)CrossRefGoogle Scholar
  26. V.J. Sieben, C.S. Debes Marun, P.M. Pilarski, G.V. Kaigala, L.M. Pilarski, C.J. Backhouse, IET Nanobiotechnol 1, 27–35 (2007)CrossRefGoogle Scholar
  27. D.R. Shaffer, M.A. Leversha, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, B. Gu, A. Anand, K. Smith, P. Maslak, G.V. Doyle, L.W.M.M. Terstappen, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 13, 2023–2029 (2007)CrossRefGoogle Scholar
  28. J.F. Swennenhuis, A.G. Tibbe, R. Levink, R.C. Sipkema, L.W. Terstappen, Cytometry A 75, 520–527 (2009)CrossRefGoogle Scholar
  29. M.A. Leversha, J. Han, Z. Asgari, D.C. Danila, O. Lin, R. Gonzalez-Espinoza, A. Anand, H. Lilja, G. Heller, M. Fleisher, H.I. Scher, Clin. Cancer Res. 15, 2091–2097 (2009)CrossRefGoogle Scholar
  30. A.B. Al-Mehdi, K. Tozawa, A.B. Fisher, L. Shientag, A. Lee, R.J. Muschel, Nat. Med. 6, 100–102 (2000)CrossRefGoogle Scholar
  31. P. Uva, A. Lahm, A. Sbardellati, A. Grigoriadis, T. Andrew, E.D. Rinaldis, PLoS One 5, 11 (2010)CrossRefGoogle Scholar
  32. D.C. Lazar, E.H. Cho, M.S. Luttgen, T.J. Metzner, M.L. Uson, M. Torrey, M.E. Gross, P. Kuhn, Phys. Biol. 9, 7 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Yu-yen Huang
    • 1
  • Kazunori Hoshino
    • 1
  • Peng Chen
    • 1
  • Chun-hsien Wu
    • 1
  • Nancy Lane
    • 2
  • Michael Huebschman
    • 2
  • Huaying Liu
    • 2
  • Konstantin Sokolov
    • 3
  • Jonathan W. Uhr
    • 2
  • Eugene P. Frenkel
    • 2
  • John X.J. Zhang
    • 1
  1. 1.Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Harold C. Simons Comprehensive Cancer Center of the University of Texas SouthwesternMedical Center, USADallasUSA
  3. 3.Department of Imaging Physics, Division of Diagnostic ImagingThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations