Biomedical Microdevices

, Volume 15, Issue 1, pp 161–169 | Cite as

Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices

  • Nikhil Rao
  • Samantha Evans
  • Danique Stewart
  • Katrina H. Spencer
  • Farah Sheikh
  • Elliot E. Hui
  • Karen L. Christman


Myoblasts are precursor muscle cells that lie nascent to mature skeletal muscle. Once muscle is damaged, these cells migrate, fuse, and regenerate the muscle tissue. It is known that skeletal muscle can partially regenerate in vivo after muscle tissue damage. However, this regeneration does not always occur, especially in more severe injuries. Cellular therapy using tissue-engineering approaches has been shown to improve organ repair and function. To exploit potential benefits of using cell therapy as an avenue for skeletal muscle repair, it is important to understand the cellular dynamics underlying skeletal myocyte formation and growth. Cardiac fibroblasts have been shown to have a major influence on cardiomyocyte function, repair, and overall spatial distribution. However, little is known regarding fibroblasts’ role on skeletal myocyte function. In this study, we utilized a reconfigurable co-culture device to understand the contact and paracrine effects of fibroblasts on skeletal myocyte alignment and differentiation using murine myoblast and fibroblast cell lines. We demonstrate that myotube alignment is increased by direct contact with fibroblasts, while myotube differentiation is reduced both in the gap and contact configurations with fibroblasts after 6 days of co-culture. Furthermore, neutralizing antibodies to FGF-2 can block these effects of fibroblasts on myotube differentiation and alignment. Finally, bi-directional signaling is critical to the observed myoblast-fibroblast interactions, since conditioned media could not reproduce the same effects observed in the gap configuration. These findings could have direct implications on cell therapies for repairing skeletal muscle, which have only utilized skeletal myoblasts or stem cell populations alone.


Co-culture Myogenesis Reconfigurable Myoblast Fibroblast FGF-2 


  1. P. Bajaj, B. Reddy, Jr., et al., Integr Biol (Camb). 3, 9 (2011)Google Scholar
  2. T.A. Baudino, W. Carver, et al., Am J Physiol Heart Circ Physiol. 291, 3 (2006)Google Scholar
  3. J.R. Beauchamp, J.E. Morgan, et al., J Cell Biol. 144, 6 (1999)Google Scholar
  4. C.F. Buchanan, C. S. Szot, et al., J Cell Biochem. (2011)Google Scholar
  5. D.R. Cook, M. E. Doumit, et al., J Cell Physiol. 157, 2 (1993)Google Scholar
  6. S.T. Cooper, A.L. Maxwell, et al., Cell Motil Cytoskeleton. 58, 3 (2004)Google Scholar
  7. N.K. Decker, S.S. Abdelmoneim, et al., Am J Pathol. 173, 4 (2008)Google Scholar
  8. Y. Fan, M. Maley, et al., Muscle Nerve. 19, 7 (1996)Google Scholar
  9. H. Flanagan-Steet, K. Hannon, et al., Dev Biol. 218, 1 (2000)Google Scholar
  10. M. Fortier, F. Comunale, et al., Cell Death Differ. 15, 8 (2008)Google Scholar
  11. M.D. Grounds, Z. Yablonka-Reuveni, Mol Cell Biol Hum Dis Ser. 3, (1993)Google Scholar
  12. K. Hannon, A.J. Kudla, et al., J Cell Biol. 132, 6 (1996)Google Scholar
  13. T.J. Hawke, D.J. Garry, J Appl Physiol. 91, 2 (2001)Google Scholar
  14. E.E. Hui, S.N. Bhatia, Proc Natl Acad Sci U S A. 104, 14 (2007)Google Scholar
  15. E.E. Hui, S.R. Khetani, et al., in Methods in Bioengineering: Microdevices in Biology and Medicine, ed. by M.L. Yarmush, R.S. Langer (Artech House, 2009), p. 43Google Scholar
  16. H. Kobayashi, T. Shimizu, et al., J Artif Organs. 11, 3 (2008)Google Scholar
  17. W.A. LaFramboise, D. Scalise, et al., Am J Physiol Cell Physiol. 292, 5 (2007)Google Scholar
  18. J. Li, Y. Wei, et al., Microvasc Res. 80, 1 (2010)Google Scholar
  19. M.J. Lim, K.J. Choi, et al., Mol Endocrinol. 21, 9 (2007)Google Scholar
  20. C.J. Mann, E. Perdiguero, et al., Skelet Muscle. 1, 1 (2011)Google Scholar
  21. K.D. McKeon-Fischer, D.H. Flagg, et al., J Biomed Mater Res A. 99, 3 (2011)Google Scholar
  22. P. Neuhaus, S. Oustanina, et al., Mol Cell Biol. 23, 17 (2003)Google Scholar
  23. J.W. Nichol, G.C. Engelmayr, Jr., et al., Biochem Biophys Res Commun. 373, 3 (2008)Google Scholar
  24. A. Ogawa, A. L. Firth, et al., Am J Physiol Cell Physiol. (2011)Google Scholar
  25. A. Otto, H. Collins-Hooper, et al., J Anat. 215, 5 (2009)Google Scholar
  26. G.K. Pavlath, D. Thaloor, et al., Dev Dynam. 212, 4 (1998)Google Scholar
  27. B. Peault, M. Rudnicki, et al., Mol Ther. 15, 5 (2007)Google Scholar
  28. H. Peng, T.C. Wen, et al., Arch Histol Cytol. 60, 2 (1997)Google Scholar
  29. D.J. Peterson, H. Ju, et al., Cardiovasc Res. 41, 3 (1999)Google Scholar
  30. A. Pirskanen, J.C. Kiefer, et al., Dev Biol. 224, 2 (2000)Google Scholar
  31. K.E. Porter, N.A. Turner, Pharmacol Therapeut. 123, 2 (2009)Google Scholar
  32. T.A. Rando, H. M. Blau, J Cell Biol. 125, 6 (1994)Google Scholar
  33. Rohr, S., Heart Rhythm. 6, 6 (2009)Google Scholar
  34. N. Said, S. Smith, et al., J Clin Invest. 121, 1 (2011)Google Scholar
  35. J.J. Santiago, X. Ma, et al., Cardiovasc Res. 89, 1 (2011)Google Scholar
  36. M.P. Savage, C.E. Hart, et al., Dev Dyn. 198, 3 (1993)Google Scholar
  37. E. Schultz, B.H. Lipton, Anat Rec. 191, 3 (1978)Google Scholar
  38. G. Seghezzi, S. Patel, et al., J Cell Biol. 141, 7 (1998)Google Scholar
  39. A.P. Sharples, N. Al-Shanti, et al., C2 and C2C12 murine skeletal myoblast models of atrophic and hypertrophic potential: Relevance to disease and ageing? J Cell Physiol. 225(1), 240–250 (2011)Google Scholar
  40. F. Sheikh, R.R. Fandrich, et al., Cardiovasc Res. 42, 3 (1999)Google Scholar
  41. I. Stratos, H. Madry, et al., Fibroblast growth factor-2-overexpressing myoblasts encapsulated in alginate spheres increase proliferation, reduce apoptosis, induce adipogenesis, and enhance regeneration following skeletal muscle injury in rats. Tissue Eng Part A. 17(21–22), 2867–2877 (2011)Google Scholar
  42. Y. Sun, M.F. Kiani, et al., Basic Res Cardiol. 97, 5 (2002)Google Scholar
  43. A. Wiedlocha, V. Sorensen, Curr Top Microbiol Immunol. 286, (2004)Google Scholar
  44. Y. Zhang, H. Li, et al., Dev Growth Differ. 52, 8 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nikhil Rao
    • 1
  • Samantha Evans
    • 1
  • Danique Stewart
    • 1
  • Katrina H. Spencer
    • 2
  • Farah Sheikh
    • 3
  • Elliot E. Hui
    • 2
  • Karen L. Christman
    • 1
  1. 1.Department of BioengineeringUniversity of CaliforniaLa JollaUSA
  2. 2.Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA
  3. 3.Department of MedicineUniversity of CaliforniaLa JollaUSA

Personalised recommendations