Biomedical Microdevices

, Volume 15, Issue 1, pp 151–160 | Cite as

A miniaturized transcutaneous system for continuous glucose monitoring

  • Robert A. CroceJr
  • SanthiSagar Vaddiraju
  • Jun Kondo
  • Yan Wang
  • Liang Zuo
  • Kai Zhu
  • Syed K. Islam
  • Diane J. Burgess
  • Fotios Papadimitrakopoulos
  • Faquir C. Jain
Article

Abstract

Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm2). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke’s error grid analysis on the as—obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 μW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices.

Keywords

Implantable sensors CMOS circuits Amperometric glucose sensors Low-power microelectronics In vivo monitoring 

References

  1. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans Biomed Circ Syst 3(3), 169–180 (2009)CrossRefGoogle Scholar
  2. U. Bhardwaj, R. Sura et al., Controlling acute inflammation with fast-releasing dexamethasone-PLGA microsphere/PVA hydrogel composites for implantable devices. J Diabetes Sci Technol 1(1), 8–17 (2007)Google Scholar
  3. U. Bhardwaj, R. Sura et al., PLGA/PVA hydrogel composites for long-term inflammation control following s.c. implantation. Int J Pharm 384(1–2), 78–86 (2010)CrossRefGoogle Scholar
  4. L. Bolomey, E. Meurville et al., Implantable ultra-low power DSP-based system for a miniature chemico-rheological biosensor. Proc Eurosensors XXIII Conf 1(1), 1235–1238 (2009)Google Scholar
  5. M.S. Boyne, D.M. Silver et al., Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor. Diabetes 52(11), 2790–2794 (2003)CrossRefGoogle Scholar
  6. C. Choleau, J.C. Klein et al., Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients: Part 2. Superiority of the one-point calibration method. Biosens Bioelectron 17(8), 647–654 (2002)CrossRefGoogle Scholar
  7. X. Chu, D. Duan et al., Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta 71(5), 2040–2047 (2007)CrossRefGoogle Scholar
  8. Y. Degani, A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. 1. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J Phys Chem 91(6), 1285–1289 (1987)CrossRefGoogle Scholar
  9. S. Dong, B. Wang et al., Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens Bioelectron 7(3), 215–222 (1992)MathSciNetCrossRefGoogle Scholar
  10. A.M.K. Enejder, T.G. Scecina et al., Raman spectroscopy for noninvasive glucose measurements. J Biomed Opt 10(3), 1–9 (2005)CrossRefGoogle Scholar
  11. A. Errachid, A. Ivorra et al., New technology for multi-sensor silicon needles for biomedical applications. Sensors and Actuators, B: Chem 78(1–3), 279–284 (2001)CrossRefGoogle Scholar
  12. A. Ersöz, A. Denizli et al., Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance. Biosens Bioelectron 20(11), 2197–2202 (2005)CrossRefGoogle Scholar
  13. M. Frost, M.E. Meyerhoff, In vivo chemical sensors: Tackling biocompatibility. Anal Chem 78(21), 7370–7377 (2006)CrossRefGoogle Scholar
  14. I. Galeska, T.K. Kim et al., Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. AAPS J 7(1), E231–E240 (2005)CrossRefGoogle Scholar
  15. R.J. Geise, J.M. Adams et al., Electropolymerized films to prevent interferences and electrode fouling in biosensors. Biosens Bioelectron 6(2), 151–160 (1991)CrossRefGoogle Scholar
  16. R. Gifford, J.J. Kehoe et al., Protein interactions with subcutaneously implanted biosensors. Biomaterials 27(12), 2587–2598 (2006)CrossRefGoogle Scholar
  17. M.R. Haider, S.K. Islam et al., A low-power signal processing unit for in vivo monitoring and transmission of sensor signals. Sensors Transducers 84(10), 1625–1632 (2007)Google Scholar
  18. K.L. Helton, B.D. Ratner et al., Biomechanics of the sensor -tissue interface-effects of motion, pressure, and design on sensor performance and the foreign body response-part II: examples and applications. J Diabetes Sci Technol 5(3), 647–656 (2011)Google Scholar
  19. T. Hickey, D. Kreutzer et al., Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 23(7), 1649–1656 (2002a)CrossRefGoogle Scholar
  20. T. Hickey, D. Kreutzer et al., In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res 61(2), 180–187 (2002b)CrossRefGoogle Scholar
  21. J.L. House, E.M. Anderson et al., Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: a one-year study. J Diabetes Sci Technol 1(1), 18–22 (2007)Google Scholar
  22. F. Jain, H. Grantham et al., Implantable Biosensor and Methods of Use Thereof, 2008, Patent Pending. US Patent Application No. 20080154101 (2008)Google Scholar
  23. K.W. Johnson, J.J. Mastrototaro et al., In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosens Bioelectron 7(10), 709–714 (1992)CrossRefGoogle Scholar
  24. F. Khan, T.E. Saxl et al., Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 399(1), 39–43 (2010)CrossRefGoogle Scholar
  25. B.P. Kovatchev, D. Shields et al., Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther 11(3), 139–143 (2009)CrossRefGoogle Scholar
  26. P.H. Kvist, T. Iburg et al., Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol Ther 8(5), 546–559 (2006)CrossRefGoogle Scholar
  27. O. Lyandres, J.M. Yuen et al., Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol Ther 10(4), 257–265 (2008)CrossRefGoogle Scholar
  28. H.A. MacKenzie, H.S. Ashton et al., Advances in photoacoustic noninvasive glucose testing. Clin Chem 45(9), 1587–1595 (1999)Google Scholar
  29. C.D. Malchoff, K. Shoukri et al., A novel noninvasive blood glucose monitor. Diabetes Care 25(12), 2268–2275 (2002)CrossRefGoogle Scholar
  30. C. Malitesta, F. Palmisano et al., Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Anal Chem 62(24), 2735–2740 (1990)CrossRefGoogle Scholar
  31. S.M. Martin, F.H. Gebara et al., A fully differential potentiostat. Sensors J, IEEE 9(2), 135–142 (2009)CrossRefGoogle Scholar
  32. B.D. McKean, D.A. Gough, A telemetry-instrumentation system for chronically implanted glucose and oxygen sensors. IEEE Trans Biomed Eng 35(7), 526–532 (1988)CrossRefGoogle Scholar
  33. J.M. Morais, F. Papadimitrakopoulos et al., Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J 12(2), 188–196 (2010)CrossRefGoogle Scholar
  34. L.W. Norton, H.E. Koschwanez et al., Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A 81(4), 858–869 (2007)Google Scholar
  35. A. Pasic, H. Koehler et al., Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386(5), 1293–1302 (2006)CrossRefGoogle Scholar
  36. S.D. Patil, F. Papadimitrakopoulos et al., Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diabetes Technol Ther 6(6), 887–897 (2004)CrossRefGoogle Scholar
  37. S.D. Patil, F. Papadimitrakopoulos et al., Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Control Release 117(1), 68–79 (2007)CrossRefGoogle Scholar
  38. J.C. Pickup, F. Hussain et al., Fluorescence-based glucose sensors. Biosens Bioelectron 20(12), 2555–2565 (2005)CrossRefGoogle Scholar
  39. A. Rawat, D.J. Burgess, Effect of physical ageing on the performance of dexamethasone loaded PLGA microspheres. Int J Pharm 415(1–2), 164–168 (2011)CrossRefGoogle Scholar
  40. P.A. Serra, G. Rocchitta et al., Design and construction of a low cost single-supply embedded telemetry system for amperometric biosensor applications. Sensors Actuators B: Chem 122(1), 118–126 (2007)CrossRefGoogle Scholar
  41. M.C. Shults, R.K. Rhodes et al., A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41(10), 937–942 (1994)CrossRefGoogle Scholar
  42. R. Tipnis, S. Vaddiraju et al., Layer-by-layer assembled semipermeable membrane for amperometric glucose sensors. J Diabetes Sci Technol 1(2), 193–200 (2007)Google Scholar
  43. J. Trzebinski, A.R.-B. Moniz et al., Hydrogel membrane improves batch-to-batch reproducibility of an enzymatic glucose biosensor. Electroanalysis 23(12), 2789–2795 (2011)CrossRefGoogle Scholar
  44. S. Vaddiraju, D.J. Burgess et al., The role of H2O2 outer diffusion on the performance of implantable glucose sensors. Biosens Bioelectron 24(6), 1557–1562 (2009a)CrossRefGoogle Scholar
  45. S. Vaddiraju, S.H., D.J. Burgess, F.C. Jain, F. Papadimitrakopoulos, “Enhanced glucose sensor linearity using poly(vinyl alcohol) hydrogels.” J. Diabetes Sci. Technol. (4), 863–874 (2009b)Google Scholar
  46. S. Vaddiraju, D.J. Burgess et al., Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol 4(6), 1540–1562 (2010a)Google Scholar
  47. S. Vaddiraju, I. Tomazos et al., Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25(7), 1553–1565 (2010b)CrossRefGoogle Scholar
  48. P. Valdastri, E. Susilo et al., Wireless implantable electronic platform for blood glucose level monitoring. Proc Eurosensors XXIII Conf 1(1), 1255–1258 (2009)Google Scholar
  49. S. Vaddiraju, A. Legassey et al., Design and fabrication of a high-performance electrochemical glucose sensor. J Diabetes Sci Technol 5(5), 1044–1051 (2011)Google Scholar
  50. B.E. Watt, A.T. Proudfoot et al., Hydrogen peroxide poisoning. Toxicol Rev 23(1), 51–57 (2004)CrossRefGoogle Scholar
  51. R. Weiss, Y. Yegorchikov et al., Noninvasive continuous glucose monitoring using photoacoustic technology —Results from the first 62 subjects. Diabetes Technol Ther 9(1), 68–74 (2007)CrossRefGoogle Scholar
  52. E. Wilkins, P. Atanasov et al., Integrated implantable device for long-term glucose monitoring. Biosens Bioelectron 10(5), 485–494 (1995)CrossRefGoogle Scholar
  53. G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12), 2388–2403 (2005)CrossRefGoogle Scholar
  54. N. Wisniewski, M. Reichert, Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces 18(3–4), 197–219 (2000)CrossRefGoogle Scholar
  55. H. Yang, T.D. Chung et al., Glucose sensor using a microfabricated electrode and electropolymerized bilayer films. Biosens Bioelectron 17(3), 251–259 (2002)CrossRefGoogle Scholar
  56. M. Zhang, M. R. Haider et al., “A low power sensor signal processing circuit for implantable biosensor applications.” Smart Mater. Struct. 16(Journal Article), 525–530 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Robert A. CroceJr
    • 1
  • SanthiSagar Vaddiraju
    • 2
    • 3
  • Jun Kondo
    • 1
  • Yan Wang
    • 4
  • Liang Zuo
    • 5
  • Kai Zhu
    • 5
  • Syed K. Islam
    • 5
  • Diane J. Burgess
    • 4
  • Fotios Papadimitrakopoulos
    • 3
    • 6
  • Faquir C. Jain
    • 1
  1. 1.Electrical & Computer EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Biorasis Inc., Technology Incubation ProgramUniversity of ConnecticutStorrsUSA
  3. 3.Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  4. 4.Department of Pharmaceutical SciencesUniversity of ConnecticutStorrsUSA
  5. 5.University of TennesseKnoxvilleUSA
  6. 6.Department of ChemistryUniversity of ConnecticutStorrsUSA

Personalised recommendations