Biomedical Microdevices

, Volume 14, Issue 6, pp 987–998 | Cite as

Bio-hybrid muscle cell-based actuators



Actuation is an essential function of any artificial or living machine, allowing its movement and its interaction with the surrounding environment. Living muscles have evolved over millions of years within animals as nature’s premier living generators of force, work and power, showing unique characteristics in comparison with standard artificial actuators. Current actuation technologies actually represent a real bottleneck in many robotics and ICT applications, including the bio-inspired ones. Main limitations involve inertia and backdrivability, stiffness control and power consumption. The development of novel actuators able to better mimic or even to overcome living muscle performances would open new horizons in robotics and ICT technologies: these components would allow the raise of a new generation of machines, with life-like movements and outstanding performances. An innovative solution to achieve this goal is represented by the merging between artificial and living entities, towards the realization of bio-hybrid devices. The aim of the present article is to describe the scientific and technological efforts made by researchers in the last two decades to achieve cell- or tissue-based actuators, with the dream of matching or outperforming natural muscles and to efficiently power micro- and mini-devices. The main challenges connected to the development of a cell-based actuator are highlighted and the most recent solutions to this scientific/technological problem are depicted, reporting advantages and drawbacks of each single approach. Future perspectives are also described, envisioning bio-hybrid actuators as key components of a new generation of machines able to show life-like movements and behaviors.


Bio-hybrid systems Cell-based actuators Living machines Muscle tissue engineering 


  1. Y. Akiyama, K. Iwabuchi, Y. Furukawa, K. Morishima, Biological contractile regulation of micropillar actuator driven by insect dorsal vessel tissue. Proc. BioRob 2008. 501 (2008)Google Scholar
  2. P.W. Alford, A.W. Feinberg, S.P. Sheehy, K.K. Parker, Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials. 31, 3613 (2010)CrossRefGoogle Scholar
  3. H. H. Asada, Bio-Bots: bio-integrated robotics using live cells as components. IEEE ICRA Plenary Lecture (2012)Google Scholar
  4. T. Asano, T. Ishizuka, H. Yawo, Optically controlled contraction of photosensitive skeletal muscle cells. Biotechnol. Bioeng. 109, 199 (2012)CrossRefGoogle Scholar
  5. Y. Bar-Cohen, Electroactive polymer (EAP) actuators as artificial muscles (The International Society for optics and photonics, USA, 2004)CrossRefGoogle Scholar
  6. M. Bassil, J. Davenas, M.E. Tahchi, Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application. Sens. Act. B. Chem. 134, 496 (2008)CrossRefGoogle Scholar
  7. J. Bath, A.J. Turberfield, DNA nanomachines. Nat. Nanotechnol. 2, 275 (2007)CrossRefGoogle Scholar
  8. S. Bauerdick, C. Burkhardt, D.P. Kern, W. Nisch, Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication. Biomed. Microdevices. 5, 93 (2003)CrossRefGoogle Scholar
  9. N. Borghol, L. Mora, T. Jouenne, N. Jaffezic-Renault, N. Sakly, A.C. Duncan, Y. Chevalier, P. Lejeune, A. Othmane, Monitoring of E. Coli immobilization on modified gold electrode: a new bacteria-based glucose sensor. Biotechnol. Bioproc. Eng. 15, 220 (2010)CrossRefGoogle Scholar
  10. S. Braun, Muscular gene transfer using nonviral vectors. Curr. Gene. Ther. 8, 391 (2008)CrossRefGoogle Scholar
  11. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rap. Comm. 31, 10 (2010)CrossRefGoogle Scholar
  12. D.G. Caldwell, Natural and artificial muscle elements as robot actuators. Mechatronics 3, 269 (1993)CrossRefGoogle Scholar
  13. M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario, An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6, 036002 (2011)CrossRefGoogle Scholar
  14. S. Calve, H. G. Simon, Biochemical and mechanical environment cooperatively regulate skeletal muscle regeneration. J. Fed. Am. Soc. Exp. Biol. doi:  10.1096/fj.11-200162 (2012)
  15. F.D. Carlson, D.R. Wilkie, Muscle physiology (Prentice-Hall, USA, 1974)Google Scholar
  16. E. Cimetta, S. Pizzato, S. Bollini, E. Serena, P. De Coppi, N. Elvassore, Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdevices. 11, 389 (2009)CrossRefGoogle Scholar
  17. G. Ciofani, L. Ricotti, S. Danti, S. Moscato, C. Nesti, D. D’Alessandro, D. Dinucci, F. Chiellini, A. Pietrabissa, M. Petrini, A. Menciassi, Investigation of interactions between poly-L-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation. Int. J. Nanomed. 5, 285 (2010a)CrossRefGoogle Scholar
  18. G. Ciofani, S. Danti, D. D’Alessandro, L. Ricotti, S. Moscato, G. Bertoni, A. Falqui, S. Berrettini, M. Petrini, V. Mattoli, A. Menciassi, Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS. Nano. 4, 6267 (2010b)CrossRefGoogle Scholar
  19. S.T. Cooper, A.L. Maxwell, E. Kizana, M. Ghoddusi, E.C. Hardeman, I.E. Alexander, D.G. Allen, K.N. North, C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with pheripheral nuclei and adult fast myosin expression. Cell. Mot. Cytoskel. 58, 200 (2004)CrossRefGoogle Scholar
  20. P. Dario, M.C. Carrozza, E. Guglielmelli, C. Laschi, A. Menciassi, S. Micera, F. Vecchi, Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects. Rob. Autom. Mag. 12, 29–45 (2005)CrossRefGoogle Scholar
  21. P. Dario, P.F.M.J. Verschure, T. Prescott, G. Cheng, G. Sandini, R. Cingolani, R. Dillmann, D. Floreano, C. Leroux, S. MacNeil, P. Roelfsema, X. Verykios, A. Bicchi, C. Melhuish, A. Albu-Schäffer, Robot companions for citizens. Proc. Comp. Sci. 7, 47 (2011)CrossRefGoogle Scholar
  22. M. Das, J.W. Rumsey, C.A. Gregory, N. Bhargava, J.F. Kang, P. Molnar, L. Riedel, X. Guo, J.J. Hickman, Embryonic motoneuron-skeletal muscle co-culture in a defined system. Neurosci. 146, 481 (2007)CrossRefGoogle Scholar
  23. D.M. Delo, D. Eberli, J.K. Williams, K.E. Andersson, A. Atala, S. Soker, Angiogenic gene modification of skeletal muscle cells to compensate for ageing-induced decline in bioengineered functional muscle tissue. Brit. J. Urol. Int. 102, 878 (2008)CrossRefGoogle Scholar
  24. M.D. Delp, D. Pette, Morphological changes during fiber type transitions in low-frequency-stimulated rat fast-twitch muscle. Cell. Tissue. Res. 277, 363 (1994)CrossRefGoogle Scholar
  25. R.G. Dennis, H. Herr, Engineered muscle actuators: cells and tissues. Biomimetics: biologically inspired technologies (Taylor & Francis, USA, 2006)Google Scholar
  26. R.G. Dennis, P.E. Kosnik II, Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro. Cell. Dev. Biol. Anim. 36, 327 (2000)CrossRefGoogle Scholar
  27. E. Diesel, M. Schreiber, J.R. Van der Meer, Development of bacteria-based bioassays for arsenic detection in natural waters. Anal. Bioanal. Chem. 394, 687 (2009)CrossRefGoogle Scholar
  28. J. Elbaz, Z.G. Wang, R. Orbach, I. Willner, pH-stimulated concurrent mechanical activation of two DNA tweezers. A set-reset logic gate system. 9, 4510 (2009)Google Scholar
  29. A.J. Engler, M.A. Griffin, S. Sen, C.G. Bönnemann, H.L. Sweeney, D.E. Discher, Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell. Biol. 166, 877 (2004)CrossRefGoogle Scholar
  30. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Muscular thin films for building actuators and powering devices. Science 317, 1366 (2007)CrossRefGoogle Scholar
  31. T. Fujie, L. Ricotti, A. Desii, A. Menciassi, P. Dario, V. Mattoli, Evaluation of substrata effect on cell adhesion properties using freestanding poly(lactic acid) nanosheets. Langmuir 27, 13173 (2011)CrossRefGoogle Scholar
  32. H. Fujita, V.T. Dau, K. Shimizu, R. Hatsuda, S. Sugiyama, E. Nagamori, Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed. Microdevices. 13, 123 (2011)CrossRefGoogle Scholar
  33. J. Gingras, R.M. Rioux, D. Cuvelier, N.A. Geisse, J.W. Lichtman, G.M. Whitesides, L. Mahadevan, J.R. Sanes, Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys. J. 97, 2771 (2009)CrossRefGoogle Scholar
  34. F. Greco, T. Fujie, L. Ricotti, S. Taccola, V. Mattoli, Micro-wrinkled conducting polymer interface for anisotropic multi-cellular alignment. (2012)Google Scholar
  35. B. Hannaford, K. Jaax, G. Klute, Bio-inspired actuation and sensing. Auton. Rob. 11, 267 (2001)MATHCrossRefGoogle Scholar
  36. H. Herr, R.G. Dennis, A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehab. 1 (2004). doi: 10.1186/1743-0003-1-6
  37. J.C. Hoffmann, J.L. West, Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft. Matter. 6, 5056 (2010)CrossRefGoogle Scholar
  38. T. Hoshino, K. Imagawa, K. Morishima, Cardiomyocyte-driven wet gel robotics chemical modulation of cardiac network pattern generator. Proc. Int. Conf. Biomech. Rob Biomech. 547 (2010)Google Scholar
  39. J.C. Houk, W.Z. Rymer, Neural control of muscle length and tension. Handbook of physiology, the nervous system, motor control (American Physiological Society, USA, 1981)Google Scholar
  40. N.F. Huang, S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li, Myotube assembly on nanofibrous and micropatterned polymers. Nano. Lett. 6, 537 (2006)CrossRefGoogle Scholar
  41. A. Huber, A. Pickett, K.M. Shakesheff, Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfiber arrays. Eur. Cells. Mat. 14, 56 (2007)Google Scholar
  42. Y. Ido, D. Takahashi, M. Sasaki, K. Nagamine, T. Miyake, P. Jasinski, M. Nishizawa, Conducting polymer microelectrodes anchored to hydrogel films (2012)Google Scholar
  43. T. Ishibashi, Y. Hoshino, H. Kaji, M. Kanzaki, M. Sato, M. Nishizawa, Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomed. Microdevices. 11, 413 (2009)CrossRefGoogle Scholar
  44. T. Ishisaka, H. Sato, Y. Akiyama, Y. Furukawa, K. Morishima, Development of bio hybrid micro power generator using contractile force of cultured cardiomyocytes. Symposium on Micro-NanoMechatronics and Human Science. 1 (2006)Google Scholar
  45. T. Ishisaka, H. Sato, Y. Akiyama, Y. Furukawa, K. Morishima, Bio-actuated power generator using heart muscle cells on a PDMS membrane. Solid-State Sensors, Actuators and Microsystems Conference. 903 (2007)Google Scholar
  46. H. Jahnsen, B.W. Kristensen, P. Thiébaud, J. Noraberg, B. Jakobsen, M. Bove, S. Martinoia, M. Koudelka-Hep, M. Grattarola, J. Zimmer, Coupling of organotipic brain slice cultures to silicon-based arrays of electrodes. Methods 18, 160 (1999)CrossRefGoogle Scholar
  47. A. Khademhosseini, K.Y. Suh, J.M. Yang, G. Eng, J. Yeh, S. Levenberg, R. Langer, Layer-by-layer deposition of hyaluronic acid and poly-L-lysine for patterned cell co-cultures. Biomaterials 25, 3583 (2004)CrossRefGoogle Scholar
  48. D.H. Kim, J. Park, K.Y. Suh, P. Kim, S.K. Choi, S. Ryu, S. Park, S.H. Lee, B. Kim, Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens. Act. B. 117, 391 (2006)CrossRefGoogle Scholar
  49. J. Kim, J. Park, S. Yang, J. Baek, B. Kim, S.H. Lee, E.S. Yoon, K. Chun, S. Park, Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab. Chip. 7, 1504 (2007)CrossRefGoogle Scholar
  50. G.K. Klute, J.M. Czerniecki, B. Hannaford, Artificial muscles: actuators for biorobotic systems. Int. J. Rob. Res. 21, 295 (2002)CrossRefGoogle Scholar
  51. S. Levenberg, J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. Van Blitterswijk, R.C. Mulligan, P.A. D’Amore, R. Langer, Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879 (2005)CrossRefGoogle Scholar
  52. S. Lv, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, H. Li, Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010)CrossRefGoogle Scholar
  53. E. Macis, M. Tedesco, P. Massobrio, R. Raiteri, S. Martinoia, An automated microdrop delivery system for neuronal network patterning on microelectrode arrays. J. Neurosci. Meth. 161, 88 (2007)CrossRefGoogle Scholar
  54. J.U. Meyer, Retina implant – a bioMEMS challenge. Sens. Act. A. Phys. 97, 1 (2002)CrossRefGoogle Scholar
  55. P. Molnar, W. Wang, A. Natarajan, J.W. Rumsey, J.J. Hickman, Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium. Biotech. Progr. 23, 265 (2007)CrossRefGoogle Scholar
  56. K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sens. Act. B. 119, 345 (2006)CrossRefGoogle Scholar
  57. K. Morishima, Y. Sakuma, Y. Akiyama, T. Hoshino, Y. Akiyama, M. Yamato, T. Okano, Fabrication of insect muscle-powered sheet toward wet nanorobotics. Proc. IEEE. Nano. 635 (2009)Google Scholar
  58. F.A. Mussa-Ivaldi, L.E. Miller, Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends. Neurosci. 26, 329 (2003)CrossRefGoogle Scholar
  59. K. Nagamine, T. Kawashima, T. Ishibashi, H. Kaji, M. Kanzaki, M. Nishizawa, Micropatterning contractile C2C12 myotubes embedded in a fibrin gel. Biotech. Bioeng. 105, 1161 (2009)Google Scholar
  60. K. Nagamine, T. Kawashima, S. Sekine, Y. Ido, M. Kanzaki, M. Nishizawa, Spatiotemporally controlled contraction of micropatterned skeletal muscle cells on a hydrogel sheet. Lab. Chip. 11, 513 (2011)CrossRefGoogle Scholar
  61. D. Neal, H. Asada, Co-fabrication of live skeletal muscles as actuators in a millimeter scale mechanical system. Proc. IEEE. Int. Conf. Rob. Aut. 3251 (2011)Google Scholar
  62. Y.V. Pan, T.C. McDevitt, T.K. Kim, D. Leach-Scampavia, P.S. Stayton, D.D. Denton, B.D. Ratner, Micro-scale cell patterning on nonfouling plasma polymerized tetraglyme coatings by protein microcontact printing. Plasm. Polym. 7, 171 (2002)CrossRefGoogle Scholar
  63. R.M.R. Pizzi, D. Rossetti, G. Cino, D. Marino, A.L. Vescovi, W. Baer, A cultured human neural network operates a robotic actuator. Biosystems 95, 137 (2009)CrossRefGoogle Scholar
  64. J.L. Pons, Emerging actuator technologies: a micromechatronic approach (John Wiley & Sons, Inc, USA, 2005)CrossRefGoogle Scholar
  65. A. Rantala, M. Utriainen, N. Kaushik, M. Virta, A.L. Valimaa, M. Karp, Luminescent bacteria-based sensing method for methylmercury specific determination. Anal. Bioanal. Chem. 400, 1041 (2011)CrossRefGoogle Scholar
  66. L. Ricotti, S. Taccola, V. Pensabene, V. Mattoli, T. Fujie, S. Takeoka, A. Menciassi, P. Dario, Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films. Biomed. Microdevices. 12, 809 (2010)CrossRefGoogle Scholar
  67. J. Rouwkema, N.C. Rivron, C.A. Van Blitterswijk, Vascularization in tissue engineering. Trends. Biotechnol. 26, 434 (2008)CrossRefGoogle Scholar
  68. B.P. Ruddy, I.W. Hunter, Design and optimization strategies for muscle-like direct-drive linear permanent magnet motors. Int. J. Rob. Res. 30, 834 (2011)CrossRefGoogle Scholar
  69. S. Sekine, Y. Ido, T. Miyake, K. Nagamine, M. Nishizawa, Conducting polymer electrodes printed on hydrogel. J. Am. Chem. Soc. 132, 13174 (2010)CrossRefGoogle Scholar
  70. E. Serena, S. Zatti, E. Reghelin, A. Pasut, E. Cimetta, N. Elvassore, Soft substrates drive optimal differentiation of human healthy and distrophic myotubes. Integr. Biol. 2, 193 (2010)CrossRefGoogle Scholar
  71. D.K. Shenoy, D.L. Thomsen III, A. Srinivasan, P. Keller, B.R. Ratna, Carbon coated liquid crystal elastomer film for artificial muscle applications. Sens. Act. A: Phys. 96, 184 (2002)CrossRefGoogle Scholar
  72. R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, G.M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. 108, 20400 (2011)CrossRefGoogle Scholar
  73. J. Shim, A. Grosberg, J.C. Nawroth, K.K. Parker, K. Bertoldi, Modeling of cardiac muscle thin films: pre-stretch, passive and active behavior. J. Biomech. 45, 832 (2012)CrossRefGoogle Scholar
  74. K. Shimizu, H. Fujita, E. Nagamori, Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives. Biotechnol. Bioeng. 103, 631 (2009)CrossRefGoogle Scholar
  75. K. Shimizu, H. Sasaki, H. Hida, H. Fujita, K. Obinata, M. Shikida, E. Nagamori, Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement. Biomed. Microdevices. 12, 247 (2010a)CrossRefGoogle Scholar
  76. K. Shimizu, H. Fujita, E. Nagamori, Micropatterning of single myotubes on a thermoresponsive culture surface using elastic stencil membranes for single-cell analysis. J. Biosci. Bioeng. 109, 174 (2010b)CrossRefGoogle Scholar
  77. F.C. Simmel, W.U. Dittmer, DNA nanodevices. Small 1, 284 (2005)CrossRefGoogle Scholar
  78. N.P. Smith, C.J. Barclay, D.S. Loiselle, The efficiency of muscle contraction. Progr. Biophys. Mol. Biol. 88, 1 (2005)Google Scholar
  79. G.M. Spinks, V. Mottaghitalab, M. Bahrami-Samani, P.G. Whitten, G.G. Wallace, Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles. Adv. Mat. 18, 637 (2006)CrossRefGoogle Scholar
  80. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymeric micropillars. Lab. Chip. 6, 230 (2006a)CrossRefGoogle Scholar
  81. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, An actuated pump on-chip powered by cultured cardiomyocytes. Lab. Chip. 6, 362 (2006b)CrossRefGoogle Scholar
  82. Y. Tian, C. Mao, Molecular gears: a pair of DNA circles continuously rolls against each others. J. Am. Chem. Soc. 126, 11410 (2004)CrossRefGoogle Scholar
  83. Q. Tseng, I. Wang, E. Duchemin-Pelletier, A. Azioune, N. Carpi, J. Gao, O. Filhol, M. Piel, M. Thery, M. Balland, A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab. Chip. 11, 2231 (2011)CrossRefGoogle Scholar
  84. S. Tsuda, K.P. Zauner, Y.P. Gunji, Robot control: from silicon circuitry to cells (Springer Verlag, Germany, 2006)Google Scholar
  85. S. Tsuda, K.P. Zauner, Y.P. Gunji, Robot control with biological cells. BioSyst. 87, 215 (2007)CrossRefGoogle Scholar
  86. S. Tsukada, H. Nakashima, K. Torimitsu, Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS One 7, e33689 (2012)CrossRefGoogle Scholar
  87. F. Vozzi, D. Mazzei, B. Vinci, G. Vozzi, T. Sbrana, L. Ricotti, N. Forgione, A. Ahluwalia, A flexible bioreactor system for constructing in vitro tissue and organ models. Biotechnol. Bioeng. 108, 2129 (2011)CrossRefGoogle Scholar
  88. P.Y. Wang, H.T. Yu, W.B. Tsai, Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnol. Bioeng. 106, 285 (2010)CrossRefGoogle Scholar
  89. M.L. Williams, W.J. Kock, Viral-based myocardial gene therapy approaches to alter cardiac function. Ann. Rev. Physiol. 66, 49 (2004)CrossRefGoogle Scholar
  90. R.C. Woledge, N.A. Curtin, E. Homsher, Energetic aspects of muscle contraction (Bellington: Academic Press, USA, 1985)Google Scholar
  91. J.Y. Wong, J.B. Leach, X.Q. Brown, Balance of chemistry, topography, and mechanics at the cell-biomaterial interface: issues and challenges for assessing the role of substrate mechanics on cell response. Surf. Sci. 570, 119 (2004)CrossRefGoogle Scholar
  92. R.G. Wylie, S. Ahsan, Y. Aizawa, K. Maxwell, C.N. Morshead, M.S. Shoichet, Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrigels. Nat. Mater. 10, 799 (2011)CrossRefGoogle Scholar
  93. J. Xi, E. Dy, M.T. Hung, C. Montemagno, Development of a self-assembled muscle-powered piezoelectric microgenerator. Proc. Nanotech. (2004)Google Scholar
  94. J. Xi, J.J. Schmidt, C.D. Montemagno, Self-assembled microdevices driven by muscle. Nat. Mat. 4, 180 (2005)CrossRefGoogle Scholar
  95. T. Yagi, M. Watanabe, Y. Ohnishi, S. Okuma, T. Mukai, Biohybrid retinal implant: research and development update in 2005. Proc. IEEE. EMBS. 248 (2005)Google Scholar
  96. K. Yamasaki, H. Hayashi, K. Nishiyama, H. Kobayashi, S. Uto, H. Kondo, S. Hashimoto, T. Fujisato, Control of myotube contraction using electrical pulse stimulation for bio-actuator. J. Artif. Org. 12, 131 (2009)CrossRefGoogle Scholar
  97. T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Mot. Cytoskel. 60, 24 (2005)CrossRefGoogle Scholar
  98. M. Zupan, M.F. Ashby, N.A. Fleck, Actuator classification and selection – the development of a database. Adv. Eng. Mat. 4, 933 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Biorobotics InstituteScuola Superiore Sant’AnnaPontederaItaly

Personalised recommendations