Biomedical Microdevices

, Volume 15, Issue 4, pp 665–671 | Cite as

Modeling and experiments of magneto-nanosensors for diagnostics of radiation exposure and cancer

  • Dokyoon Kim
  • Jung-Rok Lee
  • Eric Shen
  • Shan X. Wang
Article

Abstract

We present a resistive network model, protein assay data, and outlook of the giant magnetoresistive (GMR) spin-valve magneto-nanosensor platform ideal for multiplexed detection of protein biomarkers in solutions. The magneto-nanosensors are designed to have optimal performance considering several factors such as sensor dimension, shape anisotropy, and magnetic nanoparticle tags. The resistive network model indicates that thinner spin-valve sensors with narrower width lead to higher signals from magnetic nanoparticle tags. Standard curves and real-time measurements showed a sensitivity of ~10 pM for phosphorylated-structural maintenance of chromosome 1 (phosphor-SMC1), ~53 fM for granulocyte colony stimulation factor (GCSF), and ~460 fM for interleukin-6 (IL6), which are among the representative biomarkers for radiation exposure and cancer.

Keywords

Radiation biomarker Cancer biomarker Nanosensor Magnetic nanoparticles Immunoassay 

Abbreviations

phosphor-SMC1

Phosphorylated-structural maintenance of chromosome 1

GCSF

Granulocyte colony stimulation factor

IL6

Interleukin-6

GMR

Giant magnetoresistance

MTJ

Magnetic tunnel junction

ELISA

Enzyme-linked immunosorbent assay

References

  1. D. Appell, Wired for success. Nature 419, 553–555 (2002)CrossRefGoogle Scholar
  2. M. Aritomi, N. Kunishima, T. Okamoto, R. Kuroki, Y. Ota, K. Morikawa, Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature 401, 713–717 (1999)CrossRefGoogle Scholar
  3. D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, R.J. Colton, A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)CrossRefGoogle Scholar
  4. F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu, D.-B. Shieh, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005)CrossRefGoogle Scholar
  5. J.-W. Choi, K.W. Oh, A. Han, N. Okulan, C.A. Wijayawardhana, C. Lannes, S. Bhansali, K.T. Schlueter, W.R. Heineman, H.B. Halsall, J.H. Nevin, A.J. Helmicki, H.T. Henderson, C.H. Ahn, Development and characterization of microfluidic devices and systems for magnetic bead-based biochemical detection. Biomed. Microdevices 3(3), 191–200 (2001)CrossRefGoogle Scholar
  6. S.W. Cole, J.M.G. Arevalo, R. Takahashi, E.K. Sloan, S.K. Lutgendorf, A.K. Sood, J.F. Sheridan, T.E. Seeman, Computational identification of gene-social environment interaction at the human IL6 locus. Proc. Natl. Acad. Sci. U.S.A. 107(12), 5681–5686 (2010)CrossRefGoogle Scholar
  7. J.M. Daughton, GMR applications. J. Magn. Magn. Mater. 192, 334–342 (1999)CrossRefGoogle Scholar
  8. C.J. De Groot, M.J.A. Van Luyn, W.N.E. Van Dijk-Wolthuis, J.A. Cadée, J.A. Plantinga, W.D. Otter, W.E. Hennink, In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials 22, 1197–1203 (2001)CrossRefGoogle Scholar
  9. G.D. Demetri, J.D. Griffin, Granulocyte colony-stimulating factor and its receptor. Blood 78(11), 2791–2808 (1991)Google Scholar
  10. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Nanopore technology for biomedical applications. Biomed. Microdevices 2(1), 11–40 (1999)CrossRefGoogle Scholar
  11. J. Dobson, Magnetic nanoparticles for drug delivery. Drug Develop. Res. 67, 55–60 (2006)CrossRefGoogle Scholar
  12. R. Fan, O. Vermesh, A. Srivastava, B.K.H. Yen, L. Qin, H. Ahmad, G.A. Kwong, C.-C. Liu, J. Gould, L. Hood, J.R. Heath, Integrated barcode chips for rapid, muplexed, analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26(12), 1373–1378 (2008)CrossRefGoogle Scholar
  13. O.C. Farokhzad, R. Langer, Impact of nanotechnology on drug delivery. ACS Nano 3(1), 16–20 (2009)CrossRefGoogle Scholar
  14. R.S. Gaster, D.A. Hall, C.H. Nielsen, S.J. Osterfeld, H. Yu, K.E. Mach, R.J. Wilson, B. Murmann, J.C. Liao, S.S. Gambhir, S.X. Wang, Matrix-insensitive protein assays push the limits of biosensor in medicine. Nat. Med. 15, 1327–1332 (2009)CrossRefGoogle Scholar
  15. R.S. Gaster, D.A. Hall, S.X. Wang, Autoassembly protein assays for analyzing antibody cross-reactivity. Nano Lett. 11(7), 2579–2583 (2011a)CrossRefGoogle Scholar
  16. R.S. Gaster, D.A. Hall, S.X. Wang, nanoLAB: an ultraportable, handheld diagnostic laboratory for global health. Lab Chip 11, 950–956 (2011b)CrossRefGoogle Scholar
  17. R.S. Gaster, L. Xu, S.-J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, H. Yu, S.X. Wang, Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6, 314–320 (2011c)CrossRefGoogle Scholar
  18. A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005)CrossRefGoogle Scholar
  19. D.A. Hall, R.S. Gaster, T. Lin, S.J. Osterfeld, S. Han, B. Murmann, S.X. Wang, GMR biosensor arrays: a system perspective. Biosens. Bioelectron. 25(9), 2051–2057 (2010)CrossRefGoogle Scholar
  20. L.A. Harris, J.D. Goff, A.Y. Carmichael, J.S. Riffle, J.J. Harburn, T.G. St. Pierre, M. Saunders, Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater. 15, 1367–1377 (2003)CrossRefGoogle Scholar
  21. S. Howorka, Z. Siwy, Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009)CrossRefGoogle Scholar
  22. M.-H. Hsu, Y.-C. Su, Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery. Biomed. Microdevices 10, 785–793 (2008)CrossRefGoogle Scholar
  23. K.-I. Ishiguro, J. Kim, S. Fujiyama-Nakamura, S. Kato, Y. Watanabe, A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 12(3), 267–275 (2011)CrossRefGoogle Scholar
  24. R.G. Ivey, H.D. Moore, U.J. Voytovich, C.P. Thienes, T.D. Lorentzen, E.L. Pogosova-Agadjanyan, S. Frayo, V.K. Izaguirre, S.J. Lundberg, L. Hedin, K.R. Badiozamani, A.N. hoofnagle, D.L. Stirewalt, P. Wang, G.E. Georges, A.K. Gopal, A.G. Paulovich, Blood-based detection of radiation exposure in humans based on novel phospho-Smc1 ELISA. Radiat. Res. 175(3), 266–281 (2011)CrossRefGoogle Scholar
  25. D. Kim, N. Lee, M. Park, B.H. Kim, K. An, T. Hyeon, Synthesis of uniform ferrimagnetic magnetite nanocubes. J. Am. Chem. Soc. 131(2), 454–455 (2009)CrossRefGoogle Scholar
  26. M. Klokkenburg, C. Vonk, E.M. Claesson, J.D. Meeldijk, B.H. Erné, A.P. Philipse, Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. J. Am. Chem. Soc. 126, 16706–16707 (2004)CrossRefGoogle Scholar
  27. M.V. Kovalenko, M.I. Bodnarchuk, R.T. Lechner, G. Hesser, F. Schäffler, W. Heiss, Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J. Am. Chem. Soc. 129, 6352–6353 (2007)CrossRefGoogle Scholar
  28. W.S. Lam, X. Yang, C.A. Makaroff, Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J. Cell Sci. 118(14), 3037–3048 (2005)CrossRefGoogle Scholar
  29. M.E. Mackay, A. Tuteja, P.M. Duxbury, C.J. Hawker, B. Van Horn, Z. Guan, G. Chen, R.S. Krishnan, General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006)CrossRefGoogle Scholar
  30. R.S. Molday, S.P.S. Yen, A. Rembaum, Applications of magnetic nanospheres in labelling and separation of cells. Nature 268(4), 437–438 (1977)CrossRefGoogle Scholar
  31. N. Nitin, L.E.W. LaConte, O. Zurkiya, X. Hu, G. Bao, Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent. J. Biol. Inorg. Chem. 9, 706–712 (2004)CrossRefGoogle Scholar
  32. S.J. Osterfeld, H. Yu, R.S. Gaster, S. Caramuta, L. Xu, S.-J. Han, D.A. Hall, R.J. Wilson, S. Sun, R.L. White, R.W. Davis, N. Pourmand, S.X. Wang, Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. U.S.A. 105(52), 20637–20640 (2008)CrossRefGoogle Scholar
  33. V.P. Pattani, C. Li, T.A. Desai, T.Q. Vu, Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules. Biomed. Microdevices 10, 367–374 (2008)CrossRefGoogle Scholar
  34. M.S. Pepe, R. Etzioni, Z. Feng, J.D. Potter, M.L. Thompson, M. Thornquist, M. Winget, Y. Yasui, Phases of biomarker development for early detection of cancer. J. Natl. Cancer I. 93(14), 1054–1061 (2001)CrossRefGoogle Scholar
  35. M. Sadagurski, L. Norquay, J. Farhang, K. D’Aquino, K. Copps, M.F. White, Human IL6 enhances leptin action in mice. Diabetologia 53, 525–535 (2010)CrossRefGoogle Scholar
  36. B.R. Smith, J. Heverhagen, M. Knopp, P. Schmalbrock, J. Shapiro, M. Shiomi, N.I. Moldovan, M. Ferrari, S.C. Lee, Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed. Microdevices 9, 719–727 (2007)CrossRefGoogle Scholar
  37. C. Sun, J.S.H. Lee, M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliver. Rev. 60, 1252–1265 (2008)CrossRefGoogle Scholar
  38. B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008)CrossRefGoogle Scholar
  39. C.H.A. van de Lest, E.M.M. Versteeg, J.H. Veerkamp, T.H. van Kuppevelt, Elimination of autofluorescence in immunofluorescence microscopy with digital image processing. J. Histochem. Cytochem. 43(7), 727–730 (1995)CrossRefGoogle Scholar
  40. H.C.T. van Zaanen, R.P. Koopmans, L.A. Aarden, H.J.A.M. Rensink, J.M.L. Stouthard, S.O. Warnaar, H.M. Lokhorst, M.H.J. van Oers, Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J. Clin. Invest. 98(6), 1441–1448 (1996)CrossRefGoogle Scholar
  41. S.X. Wang, G. Li, Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magn. 44(7), 1687–1702 (2008)CrossRefGoogle Scholar
  42. G.M. Whitesides, Nanoscience, nanotechnology, and chemistry. Small 1(2), 172–179 (2005)CrossRefGoogle Scholar
  43. J.D. Wulfkuhle, L.A. Liotta, E.F. Petricoin, Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 3, 267–275 (2003)CrossRefGoogle Scholar
  44. L. Xu, H. Yu, M.S. Akhras, S.-J. Han, S. Osterfeld, R.L. White, N. Pourmand, S.X. Wang, Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008)CrossRefGoogle Scholar
  45. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dokyoon Kim
    • 1
  • Jung-Rok Lee
    • 2
  • Eric Shen
    • 1
  • Shan X. Wang
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Electrical EngineeringStanford UniversityStanfordUSA

Personalised recommendations