Abstract
An Additive Manufacturing technique for the fabrication of three-dimensional polymeric scaffolds, based on wet-spinning of poly(ε-caprolactone) (PCL) or PCL/hydroxyapatite (HA) solutions, was developed. The processing conditions to fabricate scaffolds with a layer-by-layer approach were optimized by studying their influence on fibres morphology and alignment. Two different scaffold architectures were designed and fabricated by tuning inter-fibre distance and fibres staggering. The developed scaffolds showed good reproducibility of the internal architecture characterized by highly porous, aligned fibres with an average diameter in the range 200–250 μm. Mechanical characterization showed that the architecture and HA loading influenced the scaffold compressive modulus and strength. Cell culture experiments employing MC3T3-E1 preosteoblast cell line showed good cell adhesion, proliferation, alkaline phosphatase activity and bone mineralization on the developed scaffolds.
This is a preview of subscription content, access via your institution.








References
F.J. Alcaín, M.I. Burón, J. Bioenerg. Biomembr. 26, 393–398 (1994)
ASTM International F2792 - 10e1 “Standard Terminology for Additive Manufacturing Technologies”, 2010.
P. Bartolo, M. Domingos, A. Gloria, J. Ciurana, CIRP Ann. Manuf. Technol. 60, 271–274 (2011)
B.F. Barton, J.L. Reeve, A.J. McHugh, J Polym Sci Pol Phys 35, 569–585 (1997)
G.R. Beck, E.C. Sullivan, E. Moran, B. Zerler, J. Cell. Biochem. 68, 269–280 (1998)
J.W. Calvert, W.C. Chua, N.A. Gharibjanian, S. Dhar, G.R.D. Evans, Plast. Reconstr. Surg. 116, 567–576 (2005)
H. Gao, Y. Gu, Q. Ping, J Control Release 118, 325–332 (2007)
A. Gloria, T. Russo, R. De Santis, L. Ambrosio, J App Biomat Biomech 7, 141–152 (2009)
C.D. Hoemann, H. El-Gabalawy, M.D. McKee, Pathol. Biol. 57, 318–323 (2009)
D.W. Hutmacher, Biomaterials 21, 2529–2543 (2000)
D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203–216 (2001)
V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474–5491 (2005)
M. Kikuchi, Y. Koyama, T. Yamada, Y. Imamura, T. Okada, N. Shirahama, K. Akita, K. Takakuda, J. Tanaka, Biomaterials 25, 5979–5986 (2004)
H.-W. Kim, J.C. Knowles, H.-E. Kim, J Biomed Mater Res A 70A, 467–479 (2004)
Y-H Koh, C-J Bae , J-J Sun , I-K Jun , H-E Kim, J Mater Sci Mater M 17, 773-778-778 (2006)
T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161–2175 (2003)
K.P. Kommareddy, C. Lange, M. Rumpler, J.W. Dunlop, I. Manjubala, J. Cui, K. Kratz, A. Lendlein, P. Fratzl, Biointerphases 5, 45 (2010)
K. Kyriakidou, G. Lucarini, A. Zizzi, E. Salvolini, M. Mattioli Belmonte, F. Mollica, A. Gloria, L. Ambrosio, J Bioact Compat Pol 23, 227–243 (2008)
R. Langer, J.P. Vacanti, Science 260, 920–926 (1993)
K.F. Leong, C.M. Cheah, C.K. Chua, Biomaterials 24, 2363–2378 (2003)
I.B. Leonor, M.T. Rodrigues, M.E. Gomes, R.L. Reis, J Tissue Eng Regen Med 5, 104–111 (2011)
M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. J. Bartolo, Chiellini E, in BioExtruder: Study of the influence of process parameters on PCL scaffolds properties, ed. By Bartolo PJ (CRC Press Taylor & Francis; 2009), p 67 - 73
B.C. Mack, K.W. Wright, M.E. Davis, J Control Release 139, 205–211 (2009)
D. Marolt, M. Knezevic, G. Vunjak-Novakovic, Stem Cell Research & Therapy 1, 1–10 (2010)
C. Mota, D. Puppi, D. Dinucci, C. Errico, P. Bártolo, F. Chiellini, Materials 4, 527–542 (2011)
S. Ozkan, D.M. Kalyon, X. Yu, C.A. McKelvey, M. Lowinger, Biomaterials 30, 4336–4347 (2009)
J.-B. Park, J. Surg. Res. 6, 1–6 (2010)
I. Pashkuleva, P.M. López-Pérez, H.S. Azevedo, R.L. Reis, Mat Sci Eng C 30, 981–989 (2010)
D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini, Prog. Polym. Sci. 35, 403–440 (2010)
D. Puppi, D. Dinucci, C. Bartoli, C. Mota, C. Migone, F. Dini, G. Barsotti, F. Carlucci, F. Chiellini, J Bioact Compat Pol 26, 478–492 (2011a)
D. Puppi, A.M. Piras, F. Chiellini, E. Chiellini, A. Martins, I.B. Leonor, N. Neves, R. Reis, J Tissue Eng Regen Med 5, 253–263 (2011b)
L.D. Quarles, D.A. Yohay, L.W. Lever, R. Caton, R.J. Wenstrup, J. Bone Miner. Res. 7, 683–692 (1992)
B. Rai, M.E. Oest, K.M. Dupont, K.H. Ho, S.H. Teoh, R.E. Guldberg, J Biomed Mater Res A 81A, 888–899 (2007)
K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413–3431 (2006)
C. Schiller, M. Epple, Biomaterials 24, 2037–2043 (2003)
C.M. Stanford, P.A. Jacobson, E.D. Eanes, L.A. Lembke, R.J. Midura, J. Biol. Chem. 270, 9420–9428 (1995)
M.S. Taylor, A.U. Daniels, K.P. Andriano, J. Heller, J. Appl. Biomater. 5, 151–157 (1994)
C.S. Tsay, A.J. McHugh, J Polym Sci Pol Phys 30, 309–313 (1992)
K. Tuzlakoglu, C.M. Alves, J.F. Mano, R.L. Reis, Macromol. Biosci. 4, 811–819 (2004)
Tuzlakoglu K, Reis RL, in Chitosan-based scaffolds in orthopaedic applications, ed. By Reis RL (Woodhead; Cambridge, 2008), p 357–373
K. Tuzlakoglu, I. Pashkuleva, M.T. Rodrigues, M.E. Gomes, G.Hv. Lenthe, R. Müller, R.L. Reis, J Biomed Mater Res A 92A, 369–377 (2010)
E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Piskin, Biomaterials 21, 2147–2154 (2000)
J.P. Vacanti, M.A. Morse, W.M. Saltzman, A.J. Domb, A. Perez-Atayde, R. Langer, J. Pediatr. Surg. 23, 3–9 (1988)
F. Wang, L. Shor, A. Darling, S. Khalil, W. Sun, S. Güçeri, A. Lau, Rapid Prototyping J 10, 42–49 (2004)
J. Wang, X. Yu, Acta Biomater 6, 3004–3012 (2010)
B.M. Whited, J.R. Whitney, M.C. Hofmann, Y. Xu, M.N. Rylander, Biomaterials 32, 2294–2304 (2011)
I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, J Membrane Sci 113, 361–371 (1996)
J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Biomaterials 26, 4817–4827 (2005)
M.R. Williamson, A.G.A. Coombes, Biomaterials 25, 459–465 (2004)
T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomaterials 25, 4149–4161 (2004)
M.A. Woodruff, D.W. Hutmacher, Prog. Polym. Sci. 35, 1217–1256 (2010)
P. Wutticharoenmongkol, P. Pavasant, P. Supaphol, Biomacromolecules 8, 2602–2610 (2007)
X. Zhang, H. Hua, X. Shen, Q. Yang, Polymer 48, 1005–1011 (2007)
Acknowledgments
This work was done within the framework of the European Network of Excellence “EXPERTISSUES” (Project NMP3-CT-2004-500283). Mr. Piero Narducci of University of Pisa, Italy, is acknowledged for recording SEM images.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Puppi, D., Mota, C., Gazzarri, M. et al. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomed Microdevices 14, 1115–1127 (2012). https://doi.org/10.1007/s10544-012-9677-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10544-012-9677-0