A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells

Abstract

A microfluidic device integrated with a Total Internal Reflection (TIR)-based chip for cell observation and analysis was developed. This integrated device enables in situ Total Internal Reflection Fluorescence Microscopy (TIRFM) on adherent cells cultured under continuous medium perfusion. This TIR-based chip, allows TIRFM to be easily performed on cells without the assembly of complicated optical components and cell culture chambers. The integrated device was evaluated by tracking the movement of fluorescent beads and monitoring the location of insulin granules in mouse pancreatic β-cells. This system offers higher signal-to-noise (S/N) ratio than epi-fluorescence microscopy (EPIFM), and comparable image quality to commercial TIRFM systems when imaging insulin granules. We also detected repetitive changes in intracellular Ca2+ concentration in MIN6-m9 cells stimulated with KCl, which demonstrates quick perfusion for cell analysis while maintaining high S/N ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. D. Axelrod, Total internal reflection fluorescence microscopy. Annu. Rev. Biophys. Bioengs. 13, 247–268 (1984)

    Article  Google Scholar 

  2. J.G. Burchfield, J.A. Lopez, K. Mele, P. Vallotton, W.E. Hughes, Exocytotic vesicle behaviour assessed by total internal reflection fluorescence microscopy. Traffic 11(4), 429–439 (2010)

    Article  Google Scholar 

  3. D.D. Carlo, L.Y. Wu, L.P. Lee, Dynamic single cell culture array. Lab on a Chip 6(11), 1445–1449 (2006)

    Article  Google Scholar 

  4. N. Chronis, L.P. Lee, Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall. Lab on a Chip 4(2), 125–130 (2004)

    Article  Google Scholar 

  5. P.S. Dittrich, A. Manz, Single-molecule fluorescence detection in microfluidic channels—the Holy Grail in μTAS? Anal. Bioanal. Chem. 382(8), 1771–1782 (2005)

    Article  Google Scholar 

  6. C.A. Goubko, X. Cao, Patterning multiple cell types in co-cultures: a review. Mater. Sci. Eng. C 29(6), 1855–1868 (2009)

    Article  Google Scholar 

  7. H.M. Grandin, B. Städler, M. Textor, J. Vörös, Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens. Bioelectron. 21(8), 1476–1482 (2006)

    Article  Google Scholar 

  8. W.H. Huang, F. Ai, Z.L. Wang, J.K. Cheng, Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J. Chrom. B Anal. Technol. Biomed. Life Sci. 866(1–2), 104–122 (2008)

    Article  Google Scholar 

  9. J.P. Hughes, S. Rees, S.B. Kalindjian, K.L. Philpott, Principles of early drug discovery. Br. J. Pharmacol. 162(6), 1239–1249 (2011)

    Article  Google Scholar 

  10. L.F. Kang, B.G. Chung, R. Langer, A. Khademhosseini, Microfluidics for drug discovery and development: from target selection to product lifecycle management. Drug Discov. Today. 13(1–2), 1–13 (2008)

    Article  Google Scholar 

  11. S.M. Langelier, E. Livak-Dahl, A.J. Manzo, B.N. Johnson, N.G. Walter, M.A. Burns, Flexible casting of modular self-aligning microfluidic assembly blocks. Lab on a Chip 11(9), 1679–1687 (2011)

    Article  Google Scholar 

  12. N.C.H. Le, D.V. Dao, R. Yokokawa, J. Wells, S. Sugiyama, Design, simulation and fabrication of a total internal reflection (TIR)-based chip for highly sensitive fluorescent imaging. J. Micromech. Microeng. 17(6), 1139–1146 (2007)

    Article  Google Scholar 

  13. S. Lee, B.H. Chung, S.H. Kang, Dual-color prism-type TIRFM system for direct detection of single-biomolecules on nanoarray biochips. Curr. Appl. Phys. 8(6), 700–705 (2008)

    Article  Google Scholar 

  14. K. Minami, H. Yano, T. Miki, K. Nagashima, C.Z. Wang, H. Tanaka, J.I. Miyazaki, S. Seino, Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. Am. J. Physiol. Endocrinol. Metab. 279(4), E773–E781 (2000)

    Google Scholar 

  15. M. Ohara-Imaizumi, Y. Nakamichi, T. Tanaka, H. Ishida, S. Nagamatsu, Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy - distinct behavior of granule motion in biphasic insulin release. J. Biol. Chem. 277(6), 3805–3808 (2002)

    Article  Google Scholar 

  16. M. Ohara-Imaizumi, C. Nishiwaki, T. Kikuta, S. Nagai, Y. Nakamichi, S. Nagamatsu, TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic ƒÀ-cells: different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat ƒÀ-cells. Biochem. J. 381(Pt 1), 13 (2004)

    Google Scholar 

  17. H. Schneckenburger, Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr. Opin. Biotechnol. 16(1), 13–8 (2005)

    Article  Google Scholar 

  18. B.R. Schudel, M. Tanyeri, A. Mukherjee, C.M. Schroeder, P.J.A. Kenis, Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab on a Chip 11(11), 1916–1923 (2011)

    Article  Google Scholar 

  19. R.M. Shaw, A.J. Fay, M.A. Puthenveedu, M. von Zastrow, Y.N. Jan, L.Y. Jan, Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128(3), 547–560 (2007)

    Article  Google Scholar 

  20. H. Shih-Hao, T. Fan-Gang, Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing. J. Micromech. Microeng. 15(12), 2235 (2005)

    Article  Google Scholar 

  21. A.M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, Microfluidic control of cell pairing and fusion. Nat. Meth. 6(2), 147–152 (2009)

    Article  Google Scholar 

  22. D.J. Stephens, V.J. Allan, Light microscopy techniques for live cell Imaging. Science 300(5616), 82–86 (2003)

    Article  Google Scholar 

  23. M. Suzuki, T. Yasukawa, H. Shiku, T. Matsue, Negative dielectrophoretic patterning with different cell types. Biosens. Bioelectron. 24(4), 1043–1047 (2008)

    Article  Google Scholar 

  24. J. Wang, N. Bao, L.L. Paris, R.L. Geahlen, C. Lu, Total internal reflection fluorescence flow cytometry. Anal. Chem. 80(24), 9840–9844 (2008)

    Article  Google Scholar 

  25. J. Wang, B. Fei, R.L. Geahlen, C. Lu, Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry. Lab on a Chip 10(20), 2673–2679 (2010)

    Article  Google Scholar 

  26. C.B. Wollheim, P. Maechler, Beta-cell mitochondria and insulin secretion - messenger role of nucleotides and metabolites. Diabetes 51, S37–S42 (2002)

    Article  Google Scholar 

  27. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

  28. H.M. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Diffusion dependent cell behavior in microenvironments. Lab on a Chip 5(10), 1089–1095 (2005)

    Article  Google Scholar 

  29. C.M. Zettner, M. Yoda, Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp. Fluid. 34(1), 115–121 (2003)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by Core Research for Evolutional Science & Technology (CREST), Japan Science and Technology Agency (JST), Japan. We thank Dr. N. C. H. Le with CSIRO Materials Science and Engineering, Australia for useful advice, Prof. S. Seino with Kobe University for providing MIN6-m9 cells, Prof. S. Nagamatsu with Kyorin University, Japan for providing GFP-labeled insulin vector, and Prof. H. Yokota with Kyoto University for the use of Nikon TIRFM system.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryuji Yokokawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yokokawa, R., Kitazawa, Y., Terao, K. et al. A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells. Biomed Microdevices 14, 791–797 (2012). https://doi.org/10.1007/s10544-012-9656-5

Download citation

Keywords

  • Total internal reflection fluorescent microscopy (TIRFM)
  • Cell analysis
  • Microfluidics