Skip to main content
Log in

Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The zebrafish (Danio rerio) is an emerging genetic model for regenerative medicine. In humans, myocardial infarction results in the irreversible loss of cardiomyocytes. However, zebrafish hearts fully regenerate after a 20% ventricular resection, without either scarring or arrhythmias. To study this cardiac regeneration, we developed implantable flexible multi-microelectrode membrane arrays that measure the epicardial electrocardiogram signals of zebrafish in real-time. The microelectrode electrical signals allowed for a high level of both temporal and spatial resolution (~20 μm), and the signal to noise ratio of the epicardial ECG was comparable to that of surface electrode ECG (7.1 dB vs. 7.4 dB, respectively). Processing and analysis of the signals from the microelectrode array demonstrated distinct ECG signals: namely, atrial conduction (P waves), ventricular contraction (QRS), and ventricular repolarization (QT interval). The electrical signals were in synchrony with optically measured Calcium concentration gradients in terms of d[Ca2+]/dt at both whole heart and tissue levels. These microelectrodes therefore provide a real-time analytical tool for monitoring conduction phenotypes of small vertebral animals with a high temporal and spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • O. Bergmann, R.D. Bhardwaj, S. Bernard, S. Zdunek, F. Barnabe-Heider, S. Walsh et al., Evidence for cardiomyocyte renewal in humans. Science 324(5923), 98 (2009). doi:10.1126/science.1164680

    Article  Google Scholar 

  • K. Bersell, S. Arab, B. Haring, B. Kuhn, Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138(2), 257 (2009). doi:10.1016/j.cell.2009.04.060

    Article  Google Scholar 

  • E. Braunwald, D.P. Zipes, P. Libby, R. Bonow (eds.), Braunwald’s heart disease: a textbook of cardiovascular medicine, 7th edn. (Saunders Company, Philadelphia, 2004)

    Google Scholar 

  • C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to wavelets and wavelet transforms: a primer (Prentice-Hall, Upper Saddle River, 1997)

    Google Scholar 

  • F. Chen, T.S. Klitzner, J.N. Weiss, Autonomic regulation of calcium cycling in developing embryonic mouse hearts. Cell Calcium 39(5), 375 (2006). doi:10.1016/j.ceca.2005.12.004

    Article  Google Scholar 

  • D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inform. Theor. 41(3), 613 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • A.S. Forouhar, J.R. Hove, C. Calvert, J. Flores, H. Jadvar, M. Gharib, Electrocardiographic characterization of embryonic zebrafish. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5, 3615 (2004)

    Google Scholar 

  • C. Hahn, M.A. Schwartz, The role of cellular adaptation to mechanical forces in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(12), 2101 (2008)

    Article  Google Scholar 

  • P.C. Hsieh, V.F. Segers, M.E. Davis, C. MacGillivray, J. Gannon, J.D. Molkentin et al., Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat. Med. 13(8), 970 (2007). doi:10.1038/nm1618

    Article  Google Scholar 

  • D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang et al., Epidermal electronics. Science 333(6044), 838 (2011)

    Article  Google Scholar 

  • D.J. Milan, C.A. MacRae, Animal models for arrhythmias. Cardiovasc. Res. 67(3), 426 (2005)

    Article  Google Scholar 

  • J.S. Mitcheson, J. Chen, M. Lin, C. Culberson, M.C. Sanguinetti, A structural basis for drug-induced long QT syndrome. Proc. Natl. Acad. Sci. U. S. A. 97(22), 12329 (2000)

    Article  Google Scholar 

  • K.D. Poss, L.G. Wilson, M.T. Keating, Heart regeneration in zebrafish. Science 298(5601), 2188 (2002)

    Article  Google Scholar 

  • A. Raya, A. Consiglio, Y. Kawakami, C. Rodriguez-Esteban, J.C. Izpisua-Belmonte, The zebrafish as a model of heart regeneration. Clon. Stem Cell. 6(4), 345 (2004)

    Article  Google Scholar 

  • J.L. Reeve, A.M. Duffy, T. O’Brien, A. Samali, Don’t lose heart–therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J. Cell. Mol. Med. 9(3), 609 (2005)

    Article  Google Scholar 

  • J. Rihel, D.A. Prober, A. Arvanites, K. Lam, S. Zimmerman, S. Jang et al., Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327(5963), 348 (2010)

    Article  Google Scholar 

  • D.C. Rodger, J.D. Weiland, M.S. Humayun, Y.C. Tai, Scalable high lead-count parylene package for retinal prostheses. Sensor. Actuator. B Chem. 117(1), 107 (2006a)

    Article  Google Scholar 

  • D.C. Rodger, W. Li, H. Fong, A.J. Ameri, E. Meng, J. Burdick et al. Flexible microfabricated parylene multielectrode arrays for retinal stimulation and spinal cord field modulation, in Proc. 4th International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology ((MMB’06), Okinawa, Japan, 2006b), pp. 31

  • D.C. Rodger, A.J. Fong, W. Li, H. Ameri, I. Lavrov, H. Zhong, et al. High-density Flexible Parylene-based Multielectrode Arrays for Retinal and Spinal Cord Stimulation, (Transducers ’07, Lyon, 2007)

  • D. Sedmera, M. Reckova, A. deAlmeida, M. Sedmerova, M. Biermann, J. Volejnik et al., Functional and morphological evidence for a ventricular conduction system in zebrafish and Xenopus hearts. Am. J. Physiol. Heart Circ. Physiol. 284(4), H1152 (2003)

    Google Scholar 

  • D.Y. Stainier, Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2(1), 39 (2001)

    Article  Google Scholar 

  • K. Stoletov, L. Fang, S.H. Choi, K. Hartvigsen, L.F. Hansen, C. Hall et al., Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circ. Res. 104(8), 952 (2009)

    Article  Google Scholar 

  • P. Sun, Y. Zhang, F. Yu, E. Parks, A. Lyman, Q. Wu et al., Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Ann. Biomed. Eng. 37(5), 890 (2009)

    Article  Google Scholar 

  • S.M. Szilagyi, L. Szilagyi, Wavelet transform and neural-network-based adaptive filtering for QRS detection. Proceedings: 22nd Annual IEEE - EMBS International Conference, 2, 1267. (2000)

  • H.G.R. Tan, A. Tan, P. Khong, & V. Mok, Best wavelet function identification system for ecg signal denoise applications. In International Conference on Intelligent and Advanced Systems, Kuala Lumpur, 2007 (Proceedings of International Conference on Intelligent and Advanced Systems, 2007): IEEE pp. 631

  • M. Valderrabano, F. Chen, A.S. Dave, S.T. Lamp, T.S. Klitzner, J.N. Weiss, Atrioventricular ring reentry in embryonic mouse hearts. Circulation 114(6), 543 (2006). doi:10.1161/CIRCULATIONAHA.106.633727

    Article  Google Scholar 

  • T. Yokogawa, W. Marin, J. Faraco, G. Pézeron, L. Appelbaum, J. Zhang et al., Characterization of Sleep in Zebrafish and Insomnia in Hypocretin Receptor Mutants. PloS Biol. 5(10), 2379 (2007)

    Article  Google Scholar 

  • H. Yu, L. Ai, M. Rouhanizadeh, D. Patel, E.S. Kim, T.K. Hsiai, Flexible polymer sensors for in vivo intravascular shear stress analysis. J. Microelectromech. Syst. 17(5), 1178 (2008)

    Article  Google Scholar 

  • F. Yu, R. Li, E. Parks, W. Takabe, T.K. Hsiai, Electrocardiogram signals to assess zebrafish heart regeneration: implication of long QT intervals. Ann. Biomed. Eng. 38(7), 2346 (2010)

    Article  Google Scholar 

  • F. Yu, L. Ai, W. Dai, H. Yu, T.K. Hsiai, MEMS thermal sensors to detect changes in heat transfer in the pre-atherosclerotic regions of fat-fed New Zealand white rabbits. Ann. Biomed. Eng. 39(6), 1736 (2011)

    Article  Google Scholar 

  • L.I. Zon, R.T. Peterson, In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4(1), 35 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to express gratitude for Dr. Fuhua Chen from UCLA School of Medicine for providing the Calcium voltage mapping. This project was supported by the American Heart Association Pre-Doctoral Fellowship (11PRE7370088) (FY), National Institutes of Health, National Heart Lung and Blood Institute (HL083015) (TKH), HL091302 (TKH), (HL104239) (NCC) and National Institute of Child Health & Human Development (HD069305) (NCC and TKH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung K. Hsiai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Zhao, Y., Gu, J. et al. Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed Microdevices 14, 357–366 (2012). https://doi.org/10.1007/s10544-011-9612-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9612-9

Keywords

Navigation