Skip to main content
Log in

Sensor packaging design for continuous underfoot load monitoring

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Continuous force measurement can provide valuable insight to the efficacy of limb loading regimes during fracture rehabilitation. Currently there is no load monitoring device that is capable of more than 1 h of continuous recording. To enable continuous underfoot load monitoring a piezoresistive pressure sensor was encapsulated in a non-compressible silicone gel. This basic approach to signal transduction was implemented in three continuous underfoot load sensor designs. Design I constrained the gel in a rigid urethane housing. Design II constrained the gel in a silicone elastomer bladder. Design III utilized a hybrid approach by constraining the gel with a rigid upperplate inside of an elastomeric bladder. All three designs were subjected to bench and human testing. Design I outperformed the other two designs showing high linearity (correlation coefficient of 1), low static drift (<1%) and low dynamic drift (<3%) and captured the largest percentage of weight during human testing (35%). The sensor was designed, tested and shown to be durable and accurate for a 2 week window of time. This sensor has the low cost and high performance required for large scale clinical tests to correlate limb loading and fracture healing rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PCB:

printed circuit board

ADC:

analogue to digital conversion

UV:

ultraviolet

References

  • Z.O. Abu-Faraj, G.F. Harris et al., IEEE Trans Rehabil Eng. 4(1), 33–8 (1996)

    Article  Google Scholar 

  • A. Arndt, J. Biomech. 36(12), 1813–7 (2003)

    Article  Google Scholar 

  • S.J. Bamberg, A.Y. Benbasat et al., IEEE Trans. Inf. Technol. Biomed. 12(4), 413–23 (2008)

    Article  Google Scholar 

  • S.M. Bamberg, P. Lastayo et al., Conf Proc IEEE Eng Med Biol Soc 1, 6041–4 (2006)

    Article  Google Scholar 

  • S. Barnett, J.L. Cunningham et al., Clin Biomech (Bristol, Avon) 15(10), 781–5 (2000)

    Article  Google Scholar 

  • B.C. Clark, B. Fernhall et al., J. Appl. Physiol. 101(1), 256–63 (2006)

    Article  Google Scholar 

  • T.J. Coleman, Y. Hsu, et al., Conf Proc IEEE Eng Med Biol Soc. pp. 1852–5 (2010)

  • C.N. Cornell, J.M. Lane, Clin Orthop Relat Res. (277) pp. 297–311 (1992)

  • P.J. Culligan, R.P. Goldberg et al., Obstet. Gynecol. 98(2), 253–7 (2001)

    Article  Google Scholar 

  • E. Dehne, C.W. Metz et al., J Trauma. 1, 514–35 (1961)

    Google Scholar 

  • F.E. DiLiberto, J.F. Baumhauer et al., Foot Ankle Int. 28(1), 55–60 (2007)

    Article  Google Scholar 

  • L. Dillin, P. Slabaugh, J Trauma. 26(12), 1116–9 (1986)

    Article  Google Scholar 

  • W.P. Eaton, J.H. Smith, Smart Mater. Struct. 6(5), 530–539 (1997)

    Article  Google Scholar 

  • V.G. Femery, P.G. Moretto et al., Arch Phys Med Rehabil. 85(10), 1724–8 (2004)

    Article  Google Scholar 

  • A.E. Goodship, J. Kenwright, J. Bone Joint Surg. Br. 67(4), 650–5 (1985)

    Google Scholar 

  • R. W. Henke, Introduction to fluid power circuits and systems, Addision-Wesley (1970)

  • H. Hsiao, J. Guan et al., Ergonomics 45(8), 537–55 (2002)

    Article  Google Scholar 

  • H.L. Hurkmans, J.B. Bussmann et al., Gait Posture 23(1), 118–25 (2006)

    Article  Google Scholar 

  • P.J. Johnson, E.M. Rosenbluth et al., Biomed Microdevices. 11(6), 1213–21 (2009)

    Article  Google Scholar 

  • D.R. Marsh, G. Li, Br Med Bull. 55(4), 856–69 (1999)

    Article  Google Scholar 

  • R.E. Morley Jr., E.J. Richter et al., IEEE Trans. Biomed. Eng. 48(7), 815–20 (2001)

    Article  Google Scholar 

  • J. Nilsson, A. Thorstensson, Acta Physiologica Scandinavica. 136(2), 217–227 (1989)

    Article  Google Scholar 

  • K. North, S.D. Maass, et al., Conf Proc IEEE Eng Med Biol Soc. pp. 1856–9 (2010)

  • Z. Pataky, L. Faravel et al., J. Biomech. 33(9), 1135–8 (2000)

    Article  Google Scholar 

  • J.A. Potkay, Biomed Microdevices. 10(3), 379–92 (2008)

    Article  Google Scholar 

  • J.E. Shaw, W.L. Hsi et al., Foot Ankle Int. 18(12), 809–17 (1997)

    Google Scholar 

  • R. Stefini, F.A. Rasulo, Eur. J. Anaesthesiol Suppl. 42, 192–5 (2008)

    Article  Google Scholar 

  • J. Woodburn, P. Helliwell, Clin Biomech (Bristol, Avon). 12(3), S16 (1997)

    Article  Google Scholar 

  • H.S. Zhu, G.F. Harris et al., IEEE Trans. Biomed. Eng. 38(7), 710–4 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Eric Rubie and Jack Sites at Stealth Composites for valuable assistance during cyclic testing. This project was funded by a Microgrant from the University of Utah Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Hitchcock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

North, K., Kubiak, E.N. & Hitchcock, R.W. Sensor packaging design for continuous underfoot load monitoring. Biomed Microdevices 14, 217–224 (2012). https://doi.org/10.1007/s10544-011-9599-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9599-2

Keywords

Navigation