Skip to main content
Log in

A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript


A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  • T. Alava, F. Mathieu, P. Rameil, Y. Morel, C. Soyer, D. Remiens, L. Nicu, Piezoelectric-actuated, piezoresistive-sensed circular micromembranes for label-free biosensing applications. Appl. Phys. Lett. 97(9), 093703–093703–3 (2010). ISSN 00036951

    Google Scholar 

  • C. Ayela, F. Vandevelde, D. Lagrange, K. Haupt, L. Nicu, Combining resonant piezoelectric micromembranes with molecularly imprinted polymers. Angew. Chem. Int. Ed. 46(48), 9271–9274 (2007). ISSN 1521-3773

    Article  Google Scholar 

  • E.T. Carlen, M.S. Weinberg, C.E. Dub, A.M. Zapata, J.T. Borenstein, Micromachined silicon plates for sensing molecular interactions. Appl. Phys. Lett. 89(17), 173123–173124 (2006)

    Article  Google Scholar 

  • L. Carrascosa, M. Moreno, M. Alvarez, L. Lechuga, Nanomechanical biosensors: a new sensing tool. TRAC-Trend Anal. Chem. 25(3), 196–206 (2006)

    Article  Google Scholar 

  • Z. Chaudhry, A. Ganino, Damage detection using neural networks: An initial experimental study on debonded beams. J. Intell. Mater. Syst. Struct. 5(4), 585–589 (1994)

    Article  Google Scholar 

  • B.M. Cowie, D.J. Webb, B. Tam, P. Slack, P.N. Brett, Distributive tactile sensing using fibre bragg grating sensors for biomedical applications. BioRob. 2006 2006, 312–317 (2006)

  • M. Elliott, X. Ma, P. Brett, Tracking the position of an unknown moving load along a plate using the distributive sensing method. Sens. Actuators A Phys. 138(1), 28–36 (2007)

    Article  Google Scholar 

  • A. Gupta, D. Akin, R. Bashir, Single virus particle mass detection using microresonators with nanoscale thickness. Appl. Phys. Lett. 84(11), 1976–1978 (2004)

    Article  Google Scholar 

  • B. Ilic, Y. Yang, H. Craighead, Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85(13), 2604–2606 (2004)

    Article  Google Scholar 

  • N. Lavrik, M. Sepaniak, P. Datskos, Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75(7), 2229–2253 (2004)

    Article  Google Scholar 

  • J. Lee, S. Kim, Structural damage detection in the frequency domain using neural networks. J. Intell. Mater. Syst. Struct. 18(8), 785–792 (2007)

    Article  Google Scholar 

  • R. Levin, N. Lieven, Dynamic finite element model updating using neural networks. J. Sound Vib. 210(5), 593–607 (1998)

    Article  Google Scholar 

  • J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, R. Maeda, in High Quality Factor Silicon Cantilever Driven by pzt Actuator for Resonant Based Mass Detection. 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (2008), pp. 60–65

  • J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, R. Maeda, Characterization and improvement on quality factor of microcantilevers with self-actuation and self-sensing capability. Microelectron. Eng. 86(4–6), 1208–1211 (2009)

    Article  Google Scholar 

  • X. Ma, P. Brett, The performance of a 1-D distributive tactile sensing system for detecting the position, weight, and width of a contacting load. IEEE Trans. Instrum. Meas. 51(2), 331–336 (2002)

    Article  Google Scholar 

  • X. Ma, A. Vakakis, L. Bergman, Karhunen–Loeve analysis and order reduction of the transient dynamics of linear coupled oscillators with strongly nonlinear end attachments. J. Sound Vib. 309(3–5), 569–687 (2008)

    Article  Google Scholar 

  • S. Mohanty, E. Kougianos, Biosensors: a tutorial review. IEEE Potentials 25(2), 35–40 (2006)

    Article  Google Scholar 

  • Y. Ni, X. Zhou, J. Ko, Experimental investigation of seismic damage identification using pca-compressed frequency response functions and neural networks. J. Sound Vib. 290(1–2), 242–263 (2006)

    Article  Google Scholar 

  • L. Nicu, C. Ayela, Micromachined piezoelectric membranes with high nominal quality factors in newtonian liquid media: a lamb’s model validation at the microscale. Sens. Actuators B Chem. 123(2), 860–868 (2007)

    Article  Google Scholar 

  • L. Nicu, M. Guirardel, F. Chambosse, P. Rougerie, S. Hinh, E. Trevisiol, J.-M. Francois, J.-P. Majoral, A.-M. Caminade, E. Cattan, C. Bergaud, Resonating piezoelectric membranes for microelectromechanically based bioassay: detection of streptavidin-gold nanoparticles interaction with biotinylated DNA. Sens. Actuators B Chem. 110(1), 125–136 (2005). ISSN 0925-4005

    Article  Google Scholar 

  • R. Raiteri, M. Grattarola, H.-J. Butt, P. Skladal, Micromechanical cantilever-based biosensors. Sens. Actuators B Chem. 79(2–3), 115–126 (2001)

    Article  Google Scholar 

  • K.W. Wee, G.Y. Kang, J. Park, J.Y. Kang, D.S. Yoon, J.H. Park, T.S. Kim, Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20(10), 1932–1938 (2005)

    Article  Google Scholar 

  • Z. Wu, X. Ma, P. Brett, J. Xu, Vibration analysis of submerged micro rectangular plates with distributed mass loading. Proc. R. Soc. A Mat. 465(A), 205–216 (2009)

    Google Scholar 

  • Z. Wu, M.T. Wright, X. Ma, The experimental evaluation of the dynamics of fluid-loaded microplates. J. Micromechanics Microengineering 20(7) 075034 (2010)

    Article  Google Scholar 

  • T. Xu, Z. Wang, J. Miao, L. Yu, C. Li, Micro-machined piezoelectric membrane-based immunosensor array. Biosens. Bioelectron. 24(4), 638–432 (2008)

    Article  Google Scholar 

  • C. Zang, M. Imergun, Structural damage detection using artificial neural networks and measured frf data reduced via principal component prediction. J. Sound Vib. 242(5), 813–827 (2001)

    Article  Google Scholar 

Download references


The authors would like to acknowledge the funding support from the EPSRC in the UK.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xianghong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z., Choudhury, K., Griffiths, H.R. et al. A novel silicon membrane-based biosensing platform using distributive sensing strategy and artificial neural networks for feature analysis. Biomed Microdevices 14, 83–93 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI: