Skip to main content
Log in

Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Post-translational modifications (PTM) of proteins play essential roles in cellular physiology and disease. The identification of protein substrates and detection of modification site helps understand PTM-mediated regulation in essential biological pathways and functions in various diseases. However, PTM proteins are typically present only at trace levels, making them difficult to identify in mass spectrometry based proteomics. In this paper, we report a novel and sensitive affinity chromatography on the avidin-functionalized poly(methyl methacrylate) (PMMA) microchip for enrichment of nanogram (ng) amount of PTMs. The chemical modification of poly(methyl methacrylate) (PMMA) surfaces yield avidin-terminated PMMA surfaces after UV radiation and consecutive EDC mediated coupling (amide reaction). This functionalized PMMA micro-device was developed to identify and specifically trap biotinylated PTM proteins of low abundance from complex protein mixture. Here we selected carbonylated protein as a representative PTM to illustrate the wide application of this affinity microchip for any PTMs converted into a tractable tag after derivatization. The surface topography, surface functional group mapping and elemental composition changes after each modification step of the treatment process were systematically measured qualitatively and quantitatively by atomic force microscopy, X-ray photoelectron spectroscopy and fluorescence microscopy. Quantitative study of biotinlated carbonylated protein capture recovery and elution efficiency of the device was also studied. We also envision that this subproteome enrichment micro-device can be assembled with other lab-on-a-chip components for follow-up protein analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A.A. Adams, P.I. Okagbare, J. Feng, M.L. Hupert, D. Patterson, J. Gottert, R.L. McCarley, D. Nikitopoulos, M.C. Murphy, S.A. Soper, J Am Chem Soc 130, 27 (2008)

    Google Scholar 

  • J. Bautista, M.D. Mateos-Nevado, Biosci Biotechnol, biochem 62, 3 (1998)

    Article  Google Scholar 

  • E.A. Bayer, M. Wilchek, Methods Enzymol 184, (1990).

  • H. Becker, L.E. Locascio, Talanta 56, 2 (2002)

    Article  Google Scholar 

  • T. Buranda, G.M. Jones, J.P. Nolan, J. Keij, G.P. Lopez, L.A. Sklar, J. Phys. Chem. B 103, (1999)

  • G.F. Chen, R.L. McCarley, S.A. Soper, C. Situma, J.G. Bolivar, Chem. Mater. 19, 16 (2007)

    Google Scholar 

  • I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, A. Milzani, Clin Chem 52, 4 (2006)

    Article  Google Scholar 

  • J.E. Drummond, M.I. Tahir, Int. J. Multiphase Flow 10, 5 (1984)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 23 (1998)

    Article  Google Scholar 

  • D.A. Edwards, IMA Journal of Applied Mathematics 72, (2007)

  • J. Feng, E.A. Arriaga, Electrophoresis 29, 2 (2008)

    Google Scholar 

  • J. Feng, H. Xie, D.L. Meany, L.V. Thompson, E.A. Arriaga, T.J. Griffin, J Gerontol A Biol Sci Med Sci 63, 11 (2008)

    Google Scholar 

  • M.T. Forrester, J.W. Thompson, M.W. Foster, L. Nogueira, M.A. Moseley, J.S. Stamler, Nat Biotechnol 27, 6 (2009)

    Article  Google Scholar 

  • S.L. Freire, A.R. Wheeler, Lab Chip 6, 11 (2006)

    Article  Google Scholar 

  • P. Gravesen, J. Branebjerg, O.S. Jensen, J. Micromech. Microeng. 3, 168 (1993)

    Article  Google Scholar 

  • N.A. Guzman, Electrophoresis 24, 21 (2003)

    Article  Google Scholar 

  • N.A. Guzman, R.J. Stubbs, Electrophoresis 22, 17 (2001)

    Article  Google Scholar 

  • A.C. Henry, T.J. Tutt, M. Galloway, Y.Y. Davidson, C.S. McWhorter, S.A. Soper, R.L. McCarley, Anal Chem 72, 21 (2000)

    Article  Google Scholar 

  • A. Holmberg, A. Blomstergren, O. Nord, M. Lukacs, J. Lundeberg, M. Uhlén, Electrophoresis 26, (2005)

  • J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 55, 2 (2001)

    Google Scholar 

  • S.C. Jacobson, L.B. Koutny, R. Hergenroeder, A.W. Moore Jr., J.M. Ramsey, Anal. Chem 66, 20 (1994)

    Google Scholar 

  • S.R. Jaffrey, S.H. Snyder, Sci STKE 2001, 86 (2001)

    Article  Google Scholar 

  • O.N. Jensen, Curr Opin Chem Biol 8, 1 (2004)

    Article  Google Scholar 

  • Y.V. Kazakevich, R. LoBrutto, in HPLC for pharmaceutical scientists (John Wiley & Sons, Inc., Hoboken, 2007)

  • S.C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball, J. Pei, T. Cheng, Y. Kho, H. Xiao, L. Xiao, N.V. Grishin, M. White, X.J. Yang, Y. Zhao, Mol Cell 23, 4 (2006)

    Article  Google Scholar 

  • R. Srinivasan, S. Lazare, Polymer 26, 9 (1985)

    Article  Google Scholar 

  • J. Lee, S.A. Soper, K.K. Murray, Analyst 134, 12 (2009)

    Google Scholar 

  • R.L. Levine, Free radical biology & medicine 32, 9 (2002)

    Article  Google Scholar 

  • R.L. Levine, D. Garland, C.N. Oliver, A. Amici, I. Climent, A.G. Lenz, B.W. Ahn, S. Shaltiel, E.R. Stadtman, Methods enzymol 186, (1990)

  • N. Lion, T.C. Rohner, L. Dayon, I.L. Arnaud, E. Damoc, N. Youhnovski, Z.Y. Wu, C. Roussel, J. Josserand, H. Jensen, J.S. Rossier, M. Przybylski, H.H. Girault, Electrophoresis 24, 21 (2003)

    Article  Google Scholar 

  • X. Liu, F. Dahdouh, M. Salgado, F.A. Gomez, J Pharm Sci 98, 2 (2009)

    Google Scholar 

  • X. Liu, F.A. Gomez, Electrophoresis 30, 7 (2009)

    Article  Google Scholar 

  • M. Mann, O.N. Jensen, Nat Biotechnol 21, 3 (2003)

    Article  Google Scholar 

  • G.A. Marko-Varga, J. Nilsson, T. Laurell, Electrophoresis 25, 21–22 (2004)

    Article  Google Scholar 

  • R.L. McCarley, B. Vaidya, S. Wei, A.F. Smith, A.B. Patel, J. Feng, M.C. Murphy, S.A. Soper, J Am Chem Soc 127, 3 (2005)

    Article  Google Scholar 

  • D.A. Michels, L.J. Brady, A. Guo, A. Balland, Anal Chem 79, 15 (2007)

    Article  Google Scholar 

  • H. Mirzaei, F. Regnier, Anal Chem 77, 8 (2005)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 7173 (2007)

    Article  Google Scholar 

  • S. Nilsson, T. Laurell, Anal Bioanal Chem 378, 7 (2004)

    Article  Google Scholar 

  • S.E. Ong, G. Mittler, M. Mann, Nat Methods 1, 2 (2004)

    Article  Google Scholar 

  • J. Ortega-Castro, M. Adrover, J. Frau, A. Salva, J. Donoso, F. Munoz, J. Phys. Chem. A 114, (2010)

  • U. Piran and W. J. Riordana, J Immunol Methods 133, (1990).

  • J.R. Requena, C.C. Chao, R.L. Levine, E.R. Stadtman, Proc Natl Acad Sci U S A 98, 1 (2001)

    Article  Google Scholar 

  • J.R. Requena, R.L. Levine, E.R. Stadtman, Amino acids 25, 3–4 (2003)

    Article  Google Scholar 

  • N.L. Reynaert, K. Ckless, A.S. Guala, E.F. Wouters, A. van der Vliet, Y.M. Janssen-Heininger, Biochim Biophys Acta 1760, 3 (2006)

    Article  Google Scholar 

  • A.W. Moore, S.C. Jacobson, J.M. Ramsey, Anal. Chem. 67, 13 (1995)

    Google Scholar 

  • H. Shadpour, H. Musyimi, J. Chen, S.A. Soper, J Chromatogr A 1111, 2 (2006)

    Article  Google Scholar 

  • Y. Shen, N. Tolic, C. Masselon, L. Pasa-Tolic, D.G. Camp 2nd, K.K. Hixson, R. Zhao, G.A. Anderson, R.D. Smith, Anal Chem 76, 1 (2004)

    Article  Google Scholar 

  • P. Silberzan, L. Leger, D. Ausserre, J.J. Benattar, Langmuir 7, 8 (1991)

    Article  Google Scholar 

  • P. Silberzan, Susanne Perutz, Edward J. Kramer, Manoj K. Chaudhury. Langmuir 10, 7 (1994)

    Article  Google Scholar 

  • S.A. Soper, S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy, Anal. Chem 72, 19 (2000)

    Article  Google Scholar 

  • M. Srisa-Art, E.C. Dyson, A.J. deMello, J.B. Edel, Anal. Chem. 80, (2008)

  • T.B. Stachowiak, T. Rohr, E.F. Hilder, D.S. Peterson, M. Yi, F. Svec, J.M. Frechet, Electrophoresis 24, 21 (2003)

    Article  Google Scholar 

  • E.R. Stadtman, Ann. N.Y. Acad. Sci. 928, (2001).

  • X. Sun, B.A. Peeni, W. Yang, H.A. Becerril, A.T. Woolley, J Chromatogr A 1162, 2 (2007)

    Article  Google Scholar 

  • S. Wei, B. Vaidya, A.B. Patel, S.A. Soper, R.L. McCarley, J Phys Chem B 109, 35 (2005)

    Google Scholar 

  • B.S. Yoo, F.E. Regnier, Electrophoresis 25, 9 (2004)

    Article  Google Scholar 

  • J. Zhang, R. Sprung, J. Pei, X. Tan, S. Kim, H. Zhu, C.F. Liu, N.V. Grishin, Y. Zhao, Mol Cell Proteomics 8, 2 (2009)

    Google Scholar 

  • Q. Zhang, W.J. Qian, T.V. Knyushko, T.R. Clauss, S.O. Purvine, R.J. Moore, C.A. Sacksteder, M.H. Chin, D.J. Smith, D.G. Camp 2nd, D.J. Bigelow, R.D. Smith, J Proteome Res 6, 6 (2007)

    Google Scholar 

  • Y. Zhao, O.N. Jensen, Proteomics 9, 20 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Institutes of Health and the National Center for Research Resources Grant P20RR016456 and NIH grant # DK44510. Special thanks to Mr. Joseph Nealy for providing his technical assistance on AFM in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, H., Murray, K., Soper, S. et al. Ultra sensitive affinity chromatography on avidin-functionalized PMMA microchip for low abundant post-translational modified protein enrichment. Biomed Microdevices 14, 67–81 (2012). https://doi.org/10.1007/s10544-011-9586-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9586-7

Keywords

Navigation