Study of ethanol induced toxicity in liver explants using microfluidic devices

Abstract

Current in vitro methodologies for the culture and analysis of liver specific responses lack the sophistication of in vivo dynamics. In this work, a microfluidic based experimental methodology has been utilized to reproduce a biomimetic microenvironment in which pseudo in vivo liver tissue studies can be carried out under in vitro conditions. This innovative technique, which exploits the inherent advantages of microfluidic technology, has been utilised to study the viability and functionality of explant liver tissue over four days in the presence of varying concentrations of ethanol. Concentrations of ethanol as low as 20 mM have produced a decrease in WST-1 metabolism, a marker of mitochondrial activity, and an increase lactose dehydrogenase release, reflecting cell death, in the explant samples; these effects increase with higher ethanol concentrations. A concomitant decrease in albumin and urea synthesis was also observed. We believe the proposed methodology is widely applicable and is clearly of relevance to biological and clinical research including drug development and toxicity, as well as enabling better fundamental understanding of tissue/cell processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. E. Albano, Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol. Aspects Med. 29, 9–16 (2008)

    Article  Google Scholar 

  2. F.M. Balis, Evolution of anticancer drug discovery and role of cell-based screening. J. Natl. Cancer Inst. 94, 78–79 (2002)

    Article  Google Scholar 

  3. M.V. Berridge, A.S. Tan, K.D. McCoy, R. Wang, The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4, 15–20 (1996)

    Google Scholar 

  4. A.J. Blake, T.M. Pearce, N.S. Rao, S.M. Johnson, J.C. Williams, Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. Lab Chip 7, 842–849 (2007)

    Article  Google Scholar 

  5. F. Boess, M. Kamber, S. Romer, R. Gasser, D. Muller, S. Albertini, L. Suter, Gene expression in two hepatic cell lines, cultured primary hepatocytes, and liver slices compared to the in vivo liver gene expression in rats: Possible implications for toxicogenomics use of in vitro systems. Toxicol. Sci. 73, 386–402 (2003)

    Article  Google Scholar 

  6. S.L.K. Bowers, I. Banerjee, T.A. Baudino, The extracellular matrix: at the center of it all. J. Mol. Cell. Cardiol. 48, 474–482 (2010)

    Article  Google Scholar 

  7. I. Broadwell, P.D.I. Fletcher, S.J. Haswell, T. McCreedy, X.L. Zhang, Quantitative 3-dimensional profiling of channel networks within transparent ‘lab-on-a-chip’ microreactors using a digital imaging method. Lab Chip 1, 66–71 (2001)

    Article  Google Scholar 

  8. R. Castilla, R. Gonzalez, D. Fouad, E. Fraga, J. Muntane, Dual effect of ethanol on death in primary culture of human and rat hepatocytes. Alcohol Alcohol. 39, 290–296 (2004)

    Google Scholar 

  9. S. Cattaruzza, R. Perris, Proteoglycan control of cell movement during wound healing and cancer spreading. Matrix Biol. 24, 400–417 (2005)

    Article  Google Scholar 

  10. K. Chatterjee, S. Lin-Gibson, W.E. Wallace, S.H. Parekh, Y.J. Lee, M.T. Cicerone, M.F. Young, C.G. Simon Jr., The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31, 5051–5062 (2010)

    Article  Google Scholar 

  11. Y. Choi, M.A. McClain, M.C. LaPlaca, A.B. Frazier, M.G. Allen, Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures. Biomed. Microdevices 9, 7–13 (2007)

    Article  Google Scholar 

  12. D.L. Clemens, Effects of ethanol on hepatic cellular replication and cell cycle progression. World J. Gastroenterol. 13, 4955–4959 (2007)

    Google Scholar 

  13. J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)

    Article  Google Scholar 

  14. S.A. Emami, N. Vahdati-Mashhadian, R. Vosough, M.B. Oghazian, The anticancer activity of five species of artemisia on Hep2 and HepG2 cell lines. Pharmacologyonline 3, 327–339 (2009)

    Google Scholar 

  15. J.S. Gavaler, H.A. Perez, L. Estes, D.H. Van Thiel, Morphologic alterations of rat Leydig cells induced by ethanol. Pharmacol. Biochem. Behav. 18, 341–347 (1984)

    Article  Google Scholar 

  16. S.M. Hattersley, C.E. Dyer, J. Greenman, S.J. Haswell, Development of a microfluidic device for the maintenance and interrogation of viable tissue biopsies. Lab Chip 8, 1842–1846 (2008)

    Article  Google Scholar 

  17. O.A. Iseri, C.S. Lieber, L.S. Gottlieb, The ultrastructure of fatty liver induced by prolonged ethanol ingestion. Am. J. Pathol. 48, 535–555 (1966)

    Google Scholar 

  18. V.R. Iyer et al., The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999)

    Article  Google Scholar 

  19. R.T. Jones, E.A. Hudson, J.H. Resau, A review of in vitro and in vivo culture techniques for the study of pancreatic carcinogenesis. Cancer 47, 1490–1496 (1981)

    Article  Google Scholar 

  20. C.N. Jones, N. Tuleuova, J.Y. Lee, E. Ramanculov, A.H. Reddi, M.A. Zern, A. Revzin, Cultivating hepatocytes on printed arrays of HGF and BMP7 to characterize protective effects of these growth factors during in vitro alcohol injury. Biomaterials 31, 5936–5944 (2010)

    Article  Google Scholar 

  21. B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes. Anal. Chem. 78, 4291–4298 (2006)

    Article  Google Scholar 

  22. F.M. Kievit, S.J. Florczyk, M.C. Leung, O. Veiseh, J.O. Park, M.L. Disis, M. Zhang, Chitosan-alginate 3D scaffolds as a mimic of the glioma tumor microenvironment. Biomaterials 31, 5903–5910 (2010)

    Article  Google Scholar 

  23. L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab Chip 6, 394–406 (2006)

    Article  Google Scholar 

  24. L. Kim, Y.C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip 7, 681–694 (2007)

    Article  Google Scholar 

  25. A.L. King, T.M. Swain, D.A. Dickinson, M.J. Lesort, S.M. Bailey, Chronic ethanol consumption enhances sensitivity to Ca2+ mediated opening of the mitochondrial permeability transition pore and increases cyclophilin D in liver. Am. J. Physiol.—Gastrointest. Liver. Physiol. 299 (2010)

  26. L.W. Klassen, G.M. Thiele, M.J. Duryee, C.S. Schaffert, A.L. DeVeney, C.D. Hunter, P. Olinga, D.J. Tuma, An in vitro method of alcoholic liver injury using precision-cut liver slices from rats. Biochem. Pharmacol. 76, 426–436 (2008)

    Article  Google Scholar 

  27. M. Koch, F. Laub, P. Zhou, R.A. Hahn, S. Tanaka, R.E. Burgeson, D.R. Gerecke, F. Ramirez, M.K. Gordon, Collagen XXIV, a vertebrate fibrillar collagen with structural features of invertebrate collagens: selective expression in developing cornea and bone. J. Biol. Chem. 278, 43236–43244 (2003)

    Article  Google Scholar 

  28. P. Lee, R. Lin, J. Moon, L.P. Lee, Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006)

    Article  Google Scholar 

  29. Y. Ling, J. Rubin, Y. Deng, C. Huang, U. Demirci, J.M. Karp, A. Khademhosseini, A cell-laden microfluidic hydrogel. Lab Chip 7, 756–762 (2007)

    Article  Google Scholar 

  30. K. Mathijs, A.S. Kienhuis, K.J.J. Brauers, D.G.J. Jennen, A. Lahoz, J.C.S. Kleinjans, J.H.M. Van Delft, Assessing the metabolic competence of sandwich-cultured mouse primary hepatocytes. Drug Metab. Dispos. 37, 1305–1311 (2009)

    Article  Google Scholar 

  31. T. McCreedy, Rapid prototyping of glass and PDMS microstructures for micro total analytical systems and micro chemical reactors by microfabrication in the general laboratory. Anal. Chim. Acta 427, 39–43 (2001)

    Article  Google Scholar 

  32. I. Meyvantsson, D.J. Beebe, Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. 1, 423–449 (2008)

    Article  Google Scholar 

  33. A. Mortensen, I.K. Sorensen, C. Wilde, S. Dragoni, D. Mullerova, O. Toussaint, Z. Zloch, G. Sgaragli, J. Ovesna, Biological models for phytochemical research: from cell to human organism. British J. Nutr. 99 (2008)

  34. J. Nakanishi, T. Takarada, K. Yamaguchi, M. Maeda, Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences. Anal. Sci. 24, 67–72 (2008)

    Article  Google Scholar 

  35. J.T. Nevill, R. Cooper, M. Dueck, D.N. Breslauer, L.P. Lee, Integrated microfluidic cell culture and lysis on a chip. Lab Chip 7, 1689–1695 (2007)

    Article  Google Scholar 

  36. H. Ohtake, S. Kato, Y. Murawaki, Acute and chronic effect of ethanol on hepatic albumin synthesis in rat liver in vitro. Res. Commun. Chem. Pathol. Pharmacol. 53, 213–231 (1986)

    Google Scholar 

  37. C.M. Puleo, H.C. Yeh, T.H. Wang, Applications of MEMS technologies in tissue engineering. Tissue Eng. 13, 2839–2854 (2007)

    Article  Google Scholar 

  38. C.V. Rao, D.M. Wolf, A.P. Arkin, Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    Article  Google Scholar 

  39. J.H. Resau, K. Sakamoto, J.R. Cottrell, E.A. Hudson, S.J. Meltzer, Explant organ culture: a review. Cytotechnology 7, 137–149 (1991)

    Article  Google Scholar 

  40. M.A. Rothschild, M. Oratz, S.S. Schreiber, Effects of nutrition and alcohol on albumin synthesis. Alcohol. Clin. Exp. Res. 7, 28–30 (1983)

    Article  Google Scholar 

  41. X. Ruan, C. Shen, Q. Meng, Establishment of a methodology for investigating protectants against ethanol-induced hepatotoxicity. Food Chem. Toxicol. 48, 1145–1151 (2010)

    Article  Google Scholar 

  42. H.K. Seitz, P. Becker, Alcohol metabolism and cancer risk. Alcohol Res. Health 30, 38–47 (2007)

    Google Scholar 

  43. L. Sundstrom, B. Morrison Iii, M. Bradley, A. Pringle, Organotypic cultures as tools for functional screening in the CNS. Drug Discov. Today 10, 993–1000 (2005)

    Article  Google Scholar 

  44. S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber, G.M. Whitesides, Selective Chemical Treatment of Cellular Microdomains Using Multiple Laminar Streams. Chem. Biol. 10, 123–130 (2003)

    Article  Google Scholar 

  45. M.D. Tarn. Standard Operating Procedures for the Fabrication of Glass Microchips: University of Hull (2008)

  46. A. Thompson, K. Brennan, A. Cox, J. Gee, D. Harcourt, A. Harris, M. Harvie, I. Holen, A. Howell, R. Nicholson, M. Steel, C. Streuli, Evaluation of the current knowledge limitations in breast cancer research: a gap analysis. Breast Canc. Res. 10 (2008)

  47. H. Tsukamoto, K. Machida, A. Dynnyk, H. Mkrtchyan, “Second hit” models of alcoholic liver disease. Semin. Liver Dis. 29, 178–187 (2009)

    Article  Google Scholar 

  48. P.M. Van Midwoud, G.M.M. Groothuis, M.T. Merema, E. Verpoorte, Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol. Bioeng. 105, 184–194 (2010)

    Article  Google Scholar 

  49. G.M. Walker, H.C. Zeringue, D.J. Beebe, Microenvironment design considerations for cellular scale studies. Lab Chip 4, 91–97 (2004)

    Article  Google Scholar 

  50. J. Warrick, I. Meyvantsson, J.I. Ju, D.J. Beebe, High-throughput microfluidics: improved sample treatment and washing over standard wells. Lab Chip 7, 316–321 (2007)

    Article  Google Scholar 

  51. D.B. Weibel, G.M. Whitesides, Applications of microfluidics in chemical biology. Curr. Opin. Chem. Biol. 10, 584–591 (2006)

    Article  Google Scholar 

  52. D.M. Wu, Q.W. Zhai, X.L. Shi, Alcohol-induced oxidative stress and cell responses. J. Gastroenterol. Hepatol. 21, S26–S29 (2006)

    Article  Google Scholar 

  53. H.M. Yu, C.M. Alexander, D.J. Beebe, Understanding microchannel culture: parameters involved in soluble factor signaling. Lab Chip 7, 726–730 (2007)

    Article  Google Scholar 

  54. T. Zeng, K.Q. Xie, Ethanol and liver: Recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch. Toxicol. 83, 1075–1081 (2009)

    Article  Google Scholar 

  55. X.L. Zhang, H.B. Yin, J.M. Cooper, S.J. Haswell, Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal. Bioanal. Chem. 390, 833–840 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Biotechnology and Biological Sciences Research Council (Grant no. BB/E002722/1) and University of Hull for SMH studentship funding.

Competing interest

None to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samantha M. Hattersley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hattersley, S.M., Greenman, J. & Haswell, S.J. Study of ethanol induced toxicity in liver explants using microfluidic devices. Biomed Microdevices 13, 1005–1014 (2011). https://doi.org/10.1007/s10544-011-9570-2

Download citation

Keywords

  • Alcohol induced injury
  • Liver biopsy
  • Liver metabolism