Biomedical Microdevices

, Volume 13, Issue 6, pp 973–982 | Cite as

Electrical detection of dsDNA and polymerase chain reaction amplification

  • Eric Salm
  • Yi-Shao Liu
  • Daniel Marchwiany
  • Dallas Morisette
  • Yiping He
  • Arun K. Bhunia
  • Rashid Bashir


Food-borne pathogens and food safety-related outbreaks have come to the forefront over recent years. Estimates on the annual cost of sicknesses, hospitalizations, and deaths run into the billions of dollars. There is a large body of research on detection of food-borne pathogens; however, the widely accepted current systems are limited by costly reagents, lengthy time to completion, and expensive equipment. Our aim is to develop a label-free method for determining a change in DNA concentration after a PCR assay. We first used impedance spectroscopy to characterize the change in concentration of purified DNA in deionized water within a microfluidic biochip. To adequately measure the change in DNA concentration in PCR solution, it was necessary to go through a purification and precipitation step to minimize the effects of primers, PCR reagents, and excess salts. It was then shown that the purification and precipitation of the fully amplified PCR reaction showed results similar to the control tests performed with DNA in deionized water. We believe that this work has brought label free electrical biosensors for PCR amplification one step closer to reality.


Label-free Electrical detection PCR DNA Listeria 



We acknowledge funding support from a cooperative agreement with Purdue University and the Agricultural Research Service of the United States Department of Agriculture, project number 1935-42000-035, and a sub-contract to the University of Illinois at Urbana-Champaign.


  1. C.L. Asbury, A.H. Diercks, G. van den Engh, Electrophor 23, 2658–2666 (2002)CrossRefGoogle Scholar
  2. J. Baker-Jarvis, C. A. Jones and B. Riddle, NIST Tech. Note 1509, (1998)Google Scholar
  3. S. Bhattacharya, S. Salamat, D. Morisette, P. Banada, D. Akin, Y.-S. Liu, A.K. Bhunia, M. Ladisch, R. Bashir, Lab. Chip 8, 1130–1136 (2008)CrossRefGoogle Scholar
  4. N.C. Cady, S. Stelick, C.A. Batt, Biosens Bioelectron 19.1, 59–66 (2003)CrossRefGoogle Scholar
  5. N.C. Cady, S. Stelick, M.V. Kunnavakkam, C.A. Batt, Sens Actuators B 107, 332–341 (2005)CrossRefGoogle Scholar
  6. Centers for Disease Control, “Centers for Disease Control. "CDC—Estimates of Foodborne Illness Questions and Answers." Updated 19 Apr. 2011. Accessed 05 May 2011 <>
  7. S.R. Crutchfield, T. Roberts, Food Rev 23.3, 44–49 (2000)Google Scholar
  8. J.S. Daniels, N. Pourmand, Electroanal. 19.12, 1239–1257 (2007)CrossRefGoogle Scholar
  9. A. Dobrynin, M. Rubinstein, Progr. Polym., Sci. 30.11, 1049–1118 (2005)CrossRefGoogle Scholar
  10. J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, S.R. Manalis, PNAS 99.22, 14142–14146 (2002)CrossRefGoogle Scholar
  11. A.L. Ghindilis, M.W. Smith, K.R. Schwarzkopf, C. Zhan, D.R. Evans, A.M. Baptista, H.M. Simon, Electroanal. 21.13, 1459–1468 (2009)CrossRefGoogle Scholar
  12. R. Gomez, R. Bashir, T. Geng, A. Bhunia, M. Ladisch, H. Apple, S. Wereley, Biomed. Microdevices 3.3, 201–209 (2001)CrossRefGoogle Scholar
  13. J.J. Gooding, Electroanal 14.17, 1149–1156 (2002)CrossRefGoogle Scholar
  14. P.J. Hagerman, Annu Rev Biophys Biophys Chem 17.1, 265–286 (1988)CrossRefGoogle Scholar
  15. O.Y.F. Henry, J.L. Acero Sanchez, D. Latta, C.K. O’Sullivan, Biosens Bioelectron 24.7, 2064–2070 (2009)CrossRefGoogle Scholar
  16. R. Higuchi, G. Dollinger, P.S. Walsh, R. Griffith, Biotech 10.4, 413–417 (1992)CrossRefGoogle Scholar
  17. R. Higuchi, C. Fockler, G. Dollinger, R. Watson, Biotech 11.9, 1026–1030 (1993)CrossRefGoogle Scholar
  18. C.J. Hou, N. Milovic, M. Godin, P.R. Russo, R. Chakrabarti, S.R. Manalis, Anal Chem 78, 2526–2531 (2006)CrossRefGoogle Scholar
  19. J. Hou, M. Godin, K. Payer, R. Chakrabarti, S.R. Manalis, Lab Chip 7, 347–354 (2007)CrossRefGoogle Scholar
  20. F.-C. Huang, C.-S. Liao, G.-B. Lee, Electrophor 27, 3297–3305 (2006)CrossRefGoogle Scholar
  21. H.K. Hunt, A.M. Armani, Nanoscale 2, 1544–1559 (2010)CrossRefGoogle Scholar
  22. H.G. Jerrard, B.A.W. Simmons, Nature 184, 1715–1716 (1959)CrossRefGoogle Scholar
  23. J. Kafka, O. Panke, B. Abendroth, F. Lisdat, Electrochimica Acta 53.25, 7467–7474 (2008)CrossRefGoogle Scholar
  24. Y-S. Liu, P.P. Banada, A.K. Bhunia and R. Bashir, Proc. IEEE Sens., art. no. 4716498, 550–553, (2008)Google Scholar
  25. Y.-S. Liu, P.P. Banada, S. Bhattacharya, A.K. Bhunia, R. Bashir, Appl Phys Lett 92.14, 143902 (2008b)CrossRefGoogle Scholar
  26. M. Mandel, Mol Phys 4.6, 489–496 (1961)CrossRefGoogle Scholar
  27. M. Mandel, T. Odijk, Annu Rev Phys Chem 35.1, 75–108 (1984)CrossRefGoogle Scholar
  28. J. Min, J.-H. Kim, Y. Lee, K. Namkoong, H.-C. Im, H.-N. Kim, H.-Y. Kim, N. Huh, Y.-R. Kim, Lab Chip 11, 259–265 (2011)CrossRefGoogle Scholar
  29. National Advisory Committee on Microbiological Criteria for Foods, J. of Food Prot 73.6, 1160–1200 (2010)Google Scholar
  30. F. Oosawa, Biopolym 9.6, 677–688 (1970)CrossRefGoogle Scholar
  31. J.-Y. Park, S.-M. Park, Sensors 9.12, 9513–9532 (2009)CrossRefGoogle Scholar
  32. M. Sakamoto, H. Kanda, R. Hayakawa, Y. Wada, Biopolym 15.5, 879–892 (1976)CrossRefGoogle Scholar
  33. R.L. Scharff, The Produce Safety Report Project at Georgetown University. 3 Mar. 2010. Accessed 12 June 2011. <>
  34. S. Takashima, J Phys Chem 70.5, 1372–1380 (1966)CrossRefGoogle Scholar
  35. S. Tomić, S. Dolanski Babić, T. Vuletić, L. Griparić and R. Podgornik, Phys. Rev. E, 75.2, art. no. 021905, (2007)Google Scholar
  36. United States Department of Agriculture. “ERS/USDA Data Foodborne Illness Cost Calculator.“ USDA Economic Research Service—Home Page. Updated 28 Dec. 2010. Accessed 03 Apr. 2011. <>
  37. J. Wang, Z. Chen, P.L.A.M. Corstjens, M.G. Mauk, H.H. Bau, Lab Chip 6.1, 46–53 (2006). doi: 46 CrossRefGoogle Scholar
  38. L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey, Anal Chem 70, 5172–5176 (1998)CrossRefGoogle Scholar
  39. J. Wen, L.A. Legendre, J.M. Bienvenue, J.P. Landers, Anal Chem 80.17, 6472–6479 (2008)CrossRefGoogle Scholar
  40. K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris, J.P. Landers, Electrophor 23.5, 727–733 (2002)CrossRefGoogle Scholar
  41. A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.Allen Northrup, Anal. Chem 68, 4081–4086 (1996)CrossRefGoogle Scholar
  42. C. Zhang, D. Xing, Nucl. Acids Res 35.13, 4223–4237 (2007)CrossRefGoogle Scholar
  43. G. Zhang, L. Zhang, M.J. Huang, Z.H.H. Luo, G.K.I. Tay, E.A. Lim, T.G. Kang, Y. Chen, Sens. and Actuators, B: Chemical 146.1, 138–144 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eric Salm
    • 1
    • 2
  • Yi-Shao Liu
    • 4
  • Daniel Marchwiany
    • 2
    • 3
  • Dallas Morisette
    • 5
    • 6
  • Yiping He
    • 8
  • Arun K. Bhunia
    • 7
  • Rashid Bashir
    • 1
    • 2
    • 9
  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Molecular and Cellular BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Taiwan Semiconductor Manufacturing CorporationHsinchuRepublic of China
  5. 5.BioVitesse, Inc.West LafayetteUSA
  6. 6.Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA
  7. 7.Department of Food SciencePurdue UniversityWest LafayetteUSA
  8. 8.USDA-ARS-ERRCWyndmoorUSA
  9. 9.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignIllinoisUSA

Personalised recommendations