Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system


We describe an integration strategy for arbitrary sensors intended to be used as biosensors in biomedical or bioanalytical applications. For such devices ease of handling (by a potential end user) as well as strict disposable usage are of importance. Firstly we describe a generic array compatible polymer sensor housing with an effective sample volume of 1.55 μl. This housing leaves the sensitive surface of the sensor accessible for the application of biosensing layers even after the embedding. In a second step we show how this sensor housing can be used in combination with a passive disposable microfluidic chip to set up arbitrary 8-fold sensor arrays and how such a system can be complemented with an indirect microfluidic flow injection analysis (FIA) system. This system is designed in a way that it strictly separates between disposable and reusable components- by introducing tetradecane as an intermediate liquid. This results in a sensor system compatible with the demands of most biomedical applications. Comparative measurements between a classical macroscopic FIA system and this integrated indirect microfluidic system are presented. We use a surface acoustic wave (SAW) sensor as an exemplary detector in this work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. F. Bender, K. Länge, A. Voigt, M. Rapp, Anal Chem 76, 3837–3840 (2004)

    Article  Google Scholar 

  2. R. Bogue, Sens Rev 25, 180–184 (2005)

    Article  Google Scholar 

  3. T. Cass, C. Toumazou, Foresight—infectious diseases: preparing for the future, 1–30 (2006)

  4. M. Cole, J.W. Gardner, I.L. Leonte, G. Sehra, H.S. Noh et al. 2005 IEEE Sensors (IEEE Cat. No.05CH37665C). IEEE. 2005, 4 (2005)

  5. L.A. Francis, J.M. Friedt, C. Bartic, A. Campitelli, SPIE-Int Soc Opt Eng Proc SPIE - Int Soc Opt Eng 5455, 353–363 (2004)

    Google Scholar 

  6. H. Fu-Chun, L. Chia-Sheng, L. Gwo-Bin, Electrophoresis 27, 3297–3305 (2006)

    Article  Google Scholar 

  7. J. Giboz, T. Copponnex, P. Mele, J Micromech Microeng 17, R96–R109 (2007)

    Article  Google Scholar 

  8. T.M.A. Gronewold, S. Glass, E. Quandt, A. Famulok, Biosens Bioelectron 20, 2044–2052 (2005)

    Article  Google Scholar 

  9. P.M. Günther, F. Möller, T. Henkel, J.M. Köhler, G.A. Groß, Chem Eng Technol 28, 520–527 (2005)

    Article  Google Scholar 

  10. L. Gwo-Bin, C.J. Huang, C. Yi-Hsin, W. Chih-Hao, C. Tse-Chuan, Sens Actuators B 122, 461–468 (2007)

    Article  Google Scholar 

  11. M. Heckele, W.K. Schomburg, J Micromech Microeng 14, R1–R14 (2004)

    Article  Google Scholar 

  12. M. Kim, S.H. Han, Y.B. Shin, B.H. Chung, BioChip J 1, 81–89 (2007)

    Google Scholar 

  13. K. Länge, F. Bender, A. Voigt, H. Gao, M. Rapp, Anal Chem 75, 5561–5566 (2003)

    Article  Google Scholar 

  14. K. Länge, G. Blaess, A. Voigt, R. Götzen, M. Rapp, Biosens Bioelectron 22, 227–232 (2006)

    Article  Google Scholar 

  15. K. Länge, S. Grimm, M. Rapp, Sens Actuators B 125, 441–446 (2007)

    Article  Google Scholar 

  16. K. Länge, B.E. Rapp, M. Rapp, Anal Bioanal Chem 391, 1509–1519 (2008)

    Article  Google Scholar 

  17. J.H.T. Luong, K.B. Male, J.D. Glennon, Biotechnol Adv 26, 492–500 (2008)

    Article  Google Scholar 

  18. K. Martin, T. Henkel, V. Baier, A. Grodrian, T. Schon et al., Lab Chip 3, 202–207 (2003)

    Article  Google Scholar 

  19. B. Pejcic, R. De Marco, Electrochim Acta 51, 6217–6229 (2006)

    Article  Google Scholar 

  20. B.E. Rapp, L. Carneiro, K. Länge, M. Rapp, Lab Chip 9, 354–356 (2009)

    Article  Google Scholar 

  21. B.E. Rapp, F.J. Gruhl, K. Länge, Anal. Bioanal. Chem. 1–10 (2010)

  22. J. Reibel, S. Stier, A. Voigt, M. Rapp, Anal Chem 70, 5190–5197 (1998)

    Article  Google Scholar 

  23. J. Růžička, E.H. Hansen, edn, Wiley (1981)

  24. E.B. van Akker, M. Bos, W.E. van der Linden, Anal Chim Acta 373, 227–239 (1998)

    Article  Google Scholar 

  25. C.-H. Wang, G.-B. Lee, Biosens Bioelectron 21, 419–425 (2005)

    MATH  Article  Google Scholar 

Download references


The authors would like to thank Christian Alexander Wojek for his constant help and advice with software and hardware related issues.

Author information



Corresponding author

Correspondence to Bastian E. Rapp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rapp, B.E., Schickling, B., Prokop, J. et al. Design and integration of a generic disposable array-compatible sensor housing into an integrated disposable indirect microfluidic flow injection analysis system. Biomed Microdevices 13, 909–922 (2011).

Download citation


  • Microfluidics
  • Microfluidic polymer chip
  • Flow injection analysis
  • Biosensors
  • Surface acoustic wave