Biomedical Microdevices

, 13:865 | Cite as

Continuous high-throughput phosphopeptide enrichment using microfluidic channels modified with aligned ZnO/TiO2 nanorod arrays

Article

Abstract

A capillary microchannel (CM) containing TiO2-coated ZnO nanorod arrays was applied as a novel microfluidic device to selectively bind and enrich phosphopeptides. The device was prepared by pumping a TiO2 sol into a CM containing preformed ZnO nanorod arrays. Different thicknesses of the TiO2 coating were obtained by controlling the flow duration of TiO2 sol. The modified CM achieved uninterrupted high-throughput introduction, capture and enrichment of phosphopeptides using continuous-flow operation. The microfluidic device based on the modified CM showed great selectivity, sensitivity and durability for the enrichment of phosphopeptides from tryptic protein digests. These results suggest that microfluidic chips employing this strategy can be used for rapid and high-throughput enrichment of phosphopeptides from complex mixtures.

Keywords

Microfluidic device TiO2/ZnO nanorod arrays Phosphopeptide enrichment Continuous-flow High-throughput Nanobiotechnology 

References

  1. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Anal. Chem. 74, 2637–52 (2002)CrossRefGoogle Scholar
  2. M. Brivio, W. Verboom, D.N. Reinhoudt, Lab Chip 6, 329–44 (2006)CrossRefGoogle Scholar
  3. C.T. Chen, W.Y. Chen, P.J. Tsai, K.Y. Chien, J.S. Yu, Y.C. Chen, J. Proteome Res. 6, 316–25 (2007)CrossRefGoogle Scholar
  4. M.O. Collins, L. Yu, J.S. Choudhary, Proteomics 7, 2751–68 (2007)CrossRefGoogle Scholar
  5. J.D. Dunn, E.A. Igrisan, A.M. Palumbo, G.E. Reid, M.L. Bruening, Anal. Chem. 80, 5727–35 (2008)CrossRefGoogle Scholar
  6. S.B. Ficarro, J.R. Parikh, N.C. Blank, J.A. Marto, Anal. Chem. 80, 4606–13 (2008)CrossRefGoogle Scholar
  7. B.A. Garcia, J. Shabanowitz, D.F. Hunt, Methods 35, 256–64 (2005)CrossRefGoogle Scholar
  8. D.H. Geho, C.D. Jones, E.F. Petricoin, L.A. Liotta, Curr. Opin. Chem. Biol. 10, 56–61 (2006)CrossRefGoogle Scholar
  9. J.D. Graves, E.G. Krebs, Pharmacol. Ther. 82, 111–21 (1999)CrossRefGoogle Scholar
  10. Z.Y. He, Y.G. Li, Q.H. Zhang, H.Z. Wang, Appl. Catal. B Environ 93, 376–82 (2010)CrossRefGoogle Scholar
  11. H.C. Hsieh, C. Sheu, F.K. Shi, D.T. Li, J. Chromatogr. A 1165, 128–35 (2007)CrossRefGoogle Scholar
  12. M.J. Hubbard, P. Cohen, Trends Biochem. Sci. 18, 172–77 (1993)CrossRefGoogle Scholar
  13. S.S. Jensen, M.R. Larsen, Rapid Commun. Mass Spectrom. 21, 3635–45 (2007)CrossRefGoogle Scholar
  14. N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, Y. Baba, Anal. Chem. 76, 15–22 (2004)CrossRefGoogle Scholar
  15. G. Kaur-Atwal, D.J. Weston, P.L.R. Bonner, S. Crosland, P.S. Green, C.S. Creaser, Curr. Anal. Chem. 4, 127–35 (2008)CrossRefGoogle Scholar
  16. P.J.A. Kenis, R.F. Ismagilov, G.M. Whitesides, Science 285, 83–85 (1999)CrossRefGoogle Scholar
  17. S.M. Kim, S.H. Lee, K.Y. Suh, Lab Chip 8, 1015–23 (2008)CrossRefGoogle Scholar
  18. H.K. Kweon, K. Hakansson, Anal. Chem. 78, 1743–49 (2006)CrossRefGoogle Scholar
  19. M.R. Larsen, T.E. Thingholm, O.N. Jensen, P. Roepstorff, T.J.D. Jorgensen, Mol. Cell. Proteomics 4, 873–86 (2005)CrossRefGoogle Scholar
  20. Y. Li, X.Q. Xu, D.W. Qi, C.H. Deng, P.Y. Yang, X.M. Zhang, J. Proteome Res. 7, 2526–38 (2008)CrossRefGoogle Scholar
  21. H.Y. Lin, W.Y. Chen, Y.C. Chen, Anal. Bioanal. Chem. 394, 2129–36 (2009)CrossRefGoogle Scholar
  22. M. Mann, O.N. Jensen, Nat. Biotechnol. 21, 255–61 (2003)CrossRefGoogle Scholar
  23. M. Mazanek, G. Mituloviae, F. Herzog, C. Stingl, J.R.A. Hutchins, J.M. Peters, K. Mechtler, Nat. Protoc. 2, 1059–U1 (2007)CrossRefGoogle Scholar
  24. M. Rainer, H. Sonderegger, R. Bakry, C.W. Huck, S. Morandell, L.A. Huber, D.T. Gjerde, G.K. Bonn, Proteomics 8, 4593–602 (2008)CrossRefGoogle Scholar
  25. J. Reinders, A. Sickmann, Proteomics 5, 4052–61 (2005)CrossRefGoogle Scholar
  26. S. Shojaei-Zadeh, S.L. Anna, Langmuir 22, 9986–93 (2006)CrossRefGoogle Scholar
  27. M. Sturm, A. Leitner, J.H. Smatt, M. Linden, W. Lindner, Adv. Funct. Mater. 18, 2381–89 (2008)CrossRefGoogle Scholar
  28. N. Sugiyama, T. Masuda, K. Shinoda, A. Nakamura, M. Tomita, Y. Ishihama, Mol. Cell. Proteomics 6, 1103–09 (2007)CrossRefGoogle Scholar
  29. T.E. Thingholm, T.J.D. Jorgensen, O.N. Jensen, M.R. Larsen, Nat. Protoc. 1, 1929–35 (2006)CrossRefGoogle Scholar
  30. F. Torta, M. Fusi, C.S. Casari, C.E. Bottani, A. Bachi, J. Proteome Res. 8, 1932–42 (2009)CrossRefGoogle Scholar
  31. A.J. Tudos, G.A.J. Besselink, R.B.M. Schasfoort, Lab Chip 1, 83–95 (2001)CrossRefGoogle Scholar
  32. X.Q. Xu, C.H. Deng, M.X. Gao, W.J. Yu, P.Y. Yang, X.M. Zhang, Adv. Mater. 18, 3289–3293 (2006)CrossRefGoogle Scholar
  33. J.Y. Yan, X.L. Li, S.Y. Cheng, Y.X. Ke, X.M. Liang, Chem. Commun. 2929–31 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringDonghua UniversityShanghaiPeople’s Republic of China

Personalised recommendations