Biomedical Microdevices

, Volume 13, Issue 3, pp 573–583 | Cite as

Microfluidic pillar array sandwich immunofluorescence assay for ocular diagnostics

  • James V. Green
  • Dawei Sun
  • Ali Hafezi-Moghadam
  • Kameran Lashkari
  • Shashi K. MurthyEmail author


Uveitis and primary intraocular lymphoma (PIOL) are diseases associated with the invasion of lymphocytes into various regions of the eye, accompanied by expression of inflammatory cytokines. While these diseases are very different in terms of survivability and treatment options they have similar symptoms that make accurate diagnosis challenging. Furthermore, the diagnostic yield with state-of-the-art techniques for cell and cytokine analysis of vitreous and aqueous humor samples is under 20% due to inadequate sensitivity. This paper describes a simple sandwich immunofluorescence assay (sIFA) microfluidic device that is capable of identifying important analytes in ocular biopsies as a potential alternative to current diagnostic approaches. Detection is accomplished by capture of the target molecules on antibody-coated, vertical, oval shaped pillars in a microfluidic device followed by a biotinylated detection antibody and finally florescent avidin for target molecule quantification. Cytokine concentration measurements were carried out on aqueous humor samples from rats with endotoxin-induced uveitis as well as human cataract patients. Results correlated well with conventional protein quantification techniques and additionally, measurements from the human samples surpassed detection limits of current state-of-the-art immunoassay techniques. The single-digit femtomolar range of detection of this sIFA system provides lower limits of detection when compared to traditional techniques and allows for the mapping of the cytokine content of vitreous biopsies with detection limits that have yet to be realized using cost effective microfluidics. Furthermore, the relative simplicity of the device design, fabrication and ability to automate makes it easily translatable from the laboratory to a clinical setting.


Microfluidic Immunoassay Uveitis Primary intraocular lymphoma 



The authors gratefully acknowledge financial support from the National Science Foundation through grant CBET-0827868. The authors also thank Mehdi Abedi for his CFD contributions.

Supplementary material

10544_2011_9528_MOESM1_ESM.doc (128 kb)
Fig. S1 Rat cytokine calibration curves for (a) TNFα, (b) IL-6 and (c) IL-10 (DOC 128 kb)
10544_2011_9528_MOESM2_ESM.doc (334 kb)
Fig. S2 Natural log plots of the rat cytokine calibration curves (a) TNFα, (b) IL-6 and (c) IL-10. (DOC 333 kb)
10544_2011_9528_MOESM3_ESM.doc (121 kb)
Fig. S3 Human cytokine calibration curves (a) TNFα, (b) IL-5 and (c) IL-10 (DOC 121 kb)
10544_2011_9528_MOESM4_ESM.doc (359 kb)
Fig. S4 Natural log plots of the human cytokine calibration curves (a) TNFα, (b) IL-5 and (c) IL-10 (DOC 359 kb)


  1. A report published by the National Eye Institute/National Institutes of Health, (2007).Google Scholar
  2. E.K. Akpek, S.M. Maca, W.G. Christen, C.S. Foster, Ophthalmology 106, 2291–2295 (1999)CrossRefGoogle Scholar
  3. S. Banerjee, V. Savant, R.A.H. Scott, S.J. Curnow, G.R. Wallace, P.I. Murray, Invest. Ophth. Vis. Sci. 48, 2203–2207 (2007)CrossRefGoogle Scholar
  4. A. Bange, H.B. Halsall, W.R. Heineman, Biosens. Bioelectron. 20, 2488–2503 (2005)CrossRefGoogle Scholar
  5. R.R. Buggage, G. Velez, B. Myers-Powell, D.F. Shen, S.M. Whitcup, C.C. Chan, Arch. Ophthalmol. Chic. 117, 1239–1242 (1999)Google Scholar
  6. N. Cassoux, H. Merle-Beral, P. Lehoang, C. Herbort, C.C. Chan, Ophthalmology 108, 426–426 (2001)CrossRefGoogle Scholar
  7. C.C. Chan, D.J. Wallace, Cancer Control 11, 285–295 (2004)Google Scholar
  8. C.C. Chan, S.M. Whitcup, D. Solomon, R.B. Nussenblatt, Am. J. Ophthalmol. 120, 671–673 (1995)Google Scholar
  9. L.F. Cheow, S.H. Ko, S.J. Kim, K.H. Kang, J. Han, Anal. Chem. 82, 3383–3388 (2010)CrossRefGoogle Scholar
  10. S.J. Curnow, F. Falciani, O.M. Durrani, C.M.G. Cheung, E.J. Ross, K. Wloka, S. Rauz, G.R. Wallace, M. Salmon, P.I. Murray, Invest. Ophth. Vis. Sci. 46, 4251–4259 (2005)CrossRefGoogle Scholar
  11. A.F. De Vos, V.N.A. Klaren, A. Kijlstra, Invest. Ophth. Vis. Sci. 35, 3873–3883 (1994a)Google Scholar
  12. A.F. De Vos, M.A.C. Vanharen, C. Verhagen, R. Hoekzema, A. Kijlstra, Invest. Ophth. Vis. Sci. 35, 1100–1106 (1994b)Google Scholar
  13. J.V. Green, T. Kniazeva, M. Abedi, D.S. Sokhey, M.E. Taslim, S.K. Murthy, Lab Chip 9, 677–685 (2009)CrossRefGoogle Scholar
  14. A. Hafezi-Moghadam, K. Noda, L. Almulki, E.F. Ilmaki, V. Poulaki, K.L. Thomas, T. Nakazawa, T. Hisatomi, J.W. Miller, E.S. Gragoudas, FASEB J. 21, 464–474 (2007)CrossRefGoogle Scholar
  15. F.H. Hochberg, D.C. Miller, J. Neurosurg. 68, 835–853 (1988)CrossRefGoogle Scholar
  16. R. Hoekzema, P.I. Murray, M.A.C. Vanharen, M. Helle, A. Kijlstra, Invest. Ophth. Vis. Sci. 32, 88–95 (1991)Google Scholar
  17. R. Hoekzema, C. Verhagen, M. Vanharen, A. Kijlstra, Invest. Ophth. Vis. Sci. 33, 532–539 (1992)Google Scholar
  18. K. Hosokawa, M. Omata, K. Sato, M. Maeda, Lab Chip 6, 236–241 (2006)CrossRefGoogle Scholar
  19. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–U1210 (2007)CrossRefGoogle Scholar
  20. A.H.C. Ng, U. Uddayasankar, A.R. Wheeler, Anal. Bioanal. Chem. 397, 991–1007 (2010)CrossRefGoogle Scholar
  21. K. Ohta, B. Wiggert, S. Yamagami, A.W. Taylor, J.W. Streilein, J. Immunol. 164, 1185–1192 (2000)Google Scholar
  22. J.T. Rosenbaum, H.O. McDevitt, R.B. Guss, P.R. Egbert, Nature 286, 611–613 (1980)CrossRefGoogle Scholar
  23. M. Schabet, J Neuro Oncology 43, 199–201 (1999)CrossRefGoogle Scholar
  24. J.A. Vickers, M.M. Caulum, C.S. Henry, Anal. Chem. 78, 7446–7452 (2006)CrossRefGoogle Scholar
  25. S.M. Whitcup, V. StarkVancs, R.E. Wittes, D. Solomon, M.J. Podgor, R.B. Nussenblatt, C.C. Chan, Arch. Ophthalmol Chic. 115, 1157–1160 (1997)Google Scholar
  26. L.A. Wolf, G.F. Reed, R.R. Buggage, R.B. Nussenblatt, C.C. Chan, Ophthalmology 110, 1671–1672 (2003)CrossRefGoogle Scholar
  27. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153–184 (1998)CrossRefGoogle Scholar
  28. L. Yu, C.M. Li, Y.S. Liu, J. Gao, W. Wang, Y. Gan, Lab Chip 9, 1243–1247 (2009)CrossRefGoogle Scholar
  29. M. Zenkel, P. Lewczuk, A. Junemann, F.E. Kruse, G.O.H. Naumann, U. Schlotzer-Schrehardt, Am. J. Pathol. 176, 2868–2879 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • James V. Green
    • 1
  • Dawei Sun
    • 2
    • 4
  • Ali Hafezi-Moghadam
    • 2
    • 4
  • Kameran Lashkari
    • 3
    • 4
  • Shashi K. Murthy
    • 1
    Email author
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Department of OphthalmologyMassachusetts Eye and Ear InfirmaryBostonUSA
  3. 3.Schepens Eye Research InstituteBostonUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations