Biomedical Microdevices

, Volume 13, Issue 3, pp 565–571 | Cite as

Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood

  • Dwayne A. L. Vickers
  • Marina Hincapie
  • William S. Hancock
  • Shashi K. Murthy
Article

Abstract

Lectins are a group of proteins that bind specifically and reversibly to mono- and oligosaccharide carbohydrate structures that are present on the surfaces of mammalian cells. The use of lectins as capture agents in microfluidic channels was examined with a focus on cells associated with T and B lymphocytic leukemia. In addition to examining the adhesion of Jurkat T and Raji B lymphocytes to a broad panel of lectins, this work also examined the capture of these cells from whole blood. Captured T and B lymphocytes were eluted from the microfluidic devices with a solution of the lectin’s inhibiting sugar. The capture and release steps were accomplished in under 1 h. The significance of this work lies within the realm of low-cost capture of abundant target cells with non-stimulatory elution capability.

Keywords

Microfluidics Lectins Cell capture Cell adhesion Blood Leukemia 

References

  1. U. Chatterjee, P.P. Bose, S. Dey, T.P. Singh, B.P. Chatterjee, Glycoconj. J. 25, 8 (2008)CrossRefGoogle Scholar
  2. S.Y. Chen, T. Zheng, M.R. Shortreed, C. Alexander, L.M. Smith, Anal. Chem. 79, 15 (2007)Google Scholar
  3. N. Fujioka, Y. Morimoto, K. Takeuchi, M. Yoshioka, M. Kikuchi, Appl. Spectrosc. 57, 2 (2003)CrossRefGoogle Scholar
  4. K. Fukumori, Y. Akiyama, Y. Kumashiro, J. Kobayashi, M. Yamato, K. Sakai, T. Okano, Macromol. Biosci. 10, 10 (2010)CrossRefGoogle Scholar
  5. K. Gijzen, R.A.P. Raymakers, K.M. Broers, C.G. Figdor, R. Torensma, Exp. Hematol. 36, 7 (2008)CrossRefGoogle Scholar
  6. J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Lab Chip 10, 1 (2010)CrossRefGoogle Scholar
  7. J.D. Hoyer, C.W. Ross, C.Y. Li, T.E. Witzig, R.D. Gascoyne, G.W. Dewald, C.A. Hanson, Blood 86, 3 (1995)Google Scholar
  8. T. Iskratsch, A. Braun, K. Paschinger, I.B.H. Wilson, Anal. Biochem. 386, 2 (2009)CrossRefGoogle Scholar
  9. A. Jemal, R. Siegel, J. Xu, E. Ward, CA Cancer J Clin. (2010)Google Scholar
  10. H. Kaku, H. Kaneko, N. Minamihara, K. Iwata, E.T. Jordan, M.A. Rojo, N. Minami-Ishii, E. Minami, S. Hisajima, N. Shibuya, J. Biochem. 142, 3 (2007)CrossRefGoogle Scholar
  11. M. Kullolli, W.S. Hancock, M. Hincapie, J. Sep. Sci. 31, 14 (2008)CrossRefGoogle Scholar
  12. H. Lu, L.Y. Koo, W.C.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal. Chem. 76, 18 (2004)Google Scholar
  13. C.S. Mulligan, M.E. Thomas, S.P. Mulligan, N. Engl. J. Med. 359, 19 (2008)CrossRefGoogle Scholar
  14. S.K. Murthy, A. Sin, R.G. Tompkins, M. Toner, Langmuir 20, 26 (2004)Google Scholar
  15. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 7173 (2007)CrossRefGoogle Scholar
  16. J. Peacock, Leukemia: perspectives on disease and illness (Capstone Press, Mankato, 2000), pp. 5–18Google Scholar
  17. B.D. Plouffe, D.N. Njoka, J. Harris, J.H. Liao, N.K. Horick, M. Radisic, S.K. Murthy, Langmuir 23, 9 (2007)CrossRefGoogle Scholar
  18. B.D. Plouffe, M.A. Brown, R.K. Iyer, M. Radisic, S.K. Murthy, Lab Chip 9, 11 (2009)CrossRefGoogle Scholar
  19. E.A. Smith, W.D. Thomas, L.L. Kiessling, R.M. Corn, J. Am. Chem. Soc. 125, 20 (2003)CrossRefGoogle Scholar
  20. M. Toner, D. Irimia, Annu. Rev. Biomed. Eng. 7, (2005)Google Scholar
  21. S. Usami, H.H. Chen, Y.H. Zhao, S. Chien, R. Skalak, Ann. Biomed. Eng. 21, 1 (1993)CrossRefGoogle Scholar
  22. W. van den Ancker, M. Terwijn, T.M. Westers, P.A. Merle, E. van Beckhoven, A.M. Drager, G.J. Ossenkoppele, A.A. van de Loosdrecht, Leukemia 24, 7 (2010)Google Scholar
  23. J.A. Vickers, M.M. Caulum, C.S. Henry, Anal. Chem. 78, 21 (2006)CrossRefGoogle Scholar
  24. H.X. Wang, T.B. Ng, V.E.C. Ooi, W.K. Liu, Int. J. Biochem. Cell Biol. 32, 3 (2000)Google Scholar
  25. S.P. Wankhede, Z.Q. Du, J.M. Berg, M.W. Vaughn, T. Dallas, K.H. Cheng, L. Gollahon, Biotechnol. Prog. 22, 5 (2006)Google Scholar
  26. K.A. Wearne, H.C. Winter, K. O'Shea, I.J. Goldstein, Glycobiology 16, 10 (2006)CrossRefGoogle Scholar
  27. Y.N. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, (1998)Google Scholar
  28. T. Zheng, H.M. Yu, C.M. Alexander, D.J. Beebe, L.M. Smith, Biomed. Microdevices 9, 4 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dwayne A. L. Vickers
    • 1
  • Marina Hincapie
    • 2
  • William S. Hancock
    • 2
  • Shashi K. Murthy
    • 1
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.Barnett Institute and Department of Chemistry & Chemical BiologyNortheastern UniversityBostonUSA

Personalised recommendations