Biomedical Microdevices

, Volume 13, Issue 3, pp 559–564 | Cite as

The effect of interfacial tension on droplet formation in flow-focusing microfluidic device



Interfacial tension plays an important role in microfluidic emulsification, which is the process of preparing emulsions. A promising method which controls droplet behavior according to the function of the interfacial tension in the process of microfluidic emulsification is reported. The droplet size and generation frequency changed regularly to obtain appropriate concentrations of surfactant. This method could be of great help for setting up the size-controllable droplet generation systems, and ameliorating the emulsification technology. The interfacial tension effect was first analyzed by computational simulation before the real experiment, which significantly improved the efficiency of the whole research process.


Microfluidics Simulation Interfacial tension Droplet Flow-focusing 


  1. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)CrossRefGoogle Scholar
  2. D.A. Boy, F. Gibou, S. Pennathur, Lab Chip 8, 1424–1431 (2008)CrossRefGoogle Scholar
  3. V. Cristini, Y.C. Tan, Lab Chip 4, 257 (2004)CrossRefGoogle Scholar
  4. Z.T. Cygan, J.T. Cabral, K.L. Beers, E.J. Amis, Langmuir 12, 3629–3634 (2005)CrossRefGoogle Scholar
  5. P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, Appl. Phys. Lett. 85, 2649–2651 (2004)CrossRefGoogle Scholar
  6. S. Haeberle, R. Zengerle, Lab Chip 7, 1094–1110 (2007)CrossRefGoogle Scholar
  7. Y.T. Hu, D.J. Pine, L.G. Leal, Phys. Fluids 12, 484 (2000)MATHCrossRefGoogle Scholar
  8. S. Köster, F.E. Angilè, H. Duan, A. Wintner, J.J. Agresti, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110–1115 (2008)CrossRefGoogle Scholar
  9. W. Li, Z. Nie, H. Zhang, C. Paquet, M. Seo, P. Garstecki, E. Kumacheva, Langmuir 23, 8010–8014 (2007)CrossRefGoogle Scholar
  10. A. Manz, N. Graber, H.M. Widmer, Sens. Actuators B. 1, 244–248 (1990)CrossRefGoogle Scholar
  11. F.L. Mi, S.S. Shyu, T.S. Lee, T.B. Wong, Langmuir 22, 9453–9457 (2006)CrossRefGoogle Scholar
  12. A.M. Munshi, V.N. Singh, M. Kumar, J.P. Singh, J. Appl. Phys. 103, 084315 (2008)CrossRefGoogle Scholar
  13. S. Osher, J.A. Sethian, J. Comput. Phys. 79, 12–49 (1988)MathSciNetMATHCrossRefGoogle Scholar
  14. Serra et al., Langmuir 23, 7745–7750 (2007)MathSciNetCrossRefGoogle Scholar
  15. J.A. Sethian, (Cambridge University Press, Cambridge, 1999)Google Scholar
  16. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977–1026 (2005)CrossRefGoogle Scholar
  17. S. Sugiura, M. Nakajima, S. Iwamoto, M. Seki, Langmuir 17, 5562–5566 (2001)CrossRefGoogle Scholar
  18. S.-Y. Teh, R. Lin, L.-H. Hung, A.P. Lee, Lab Chip 8, 198 (2008)CrossRefGoogle Scholar
  19. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163 (2001)CrossRefGoogle Scholar
  20. Wang et al., Langmuir 25, 2153–2158 (2009a)CrossRefGoogle Scholar
  21. K. Wang, Y.C. Lu, J.H. Xu, G.S. Luo, Langmuir 25, 2153–2158 (2009b)CrossRefGoogle Scholar
  22. G.M. Whitesides, Nature 442, 368–373 (2006)CrossRefGoogle Scholar
  23. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRefGoogle Scholar
  24. Q.Y. Xu, M. Nakajima, Appl. Phys. Lett. 85, 3726–3728 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of PhysicsSchool of Physics and Technology, Wuhan UniversityWuhanChina

Personalised recommendations