Biomedical Microdevices

, Volume 13, Issue 3, pp 549–557 | Cite as

Rheologically biomimetic cell suspensions for decreased cell settling in microfluidic devices

  • Cari A. Launiere
  • Gregory J. Czaplewski
  • Ja Hye Myung
  • Seungpyo Hong
  • David T. Eddington
Article

Abstract

Many microfluidic devices operate with cells suspended in buffer solutions. Researchers who work with large cell types in such devices often run into problems with gravitational cell settling in the injection equipment and in the device itself. A method for reducing this problematic settling is discussed in this paper using tumor cell lines as an example. Microfluidic circulating tumor cell (CTC) isolation devices (MCIDs) are benchmarked using buffer solutions spiked with in-vitro tumor cell lines prior to validation with clinical samples (i.e. whole blood). However, buffer solutions have different rheological properties than whole blood. Here we describe the use of alginate in PBS buffer solutions to mimic blood rheology and reduce cell settling during preliminary validation experiments. Because alginate increases the viscosity of a solution, it helps to maintain cells in suspension. We report that vertical equipment configurations are important to further mitigate the effects of cell settling for MDA-MB-468 carcinoma cells. We also report that alginate does not disrupt the specific binding interactions that are the basis of carcinoma cell capture in MCIDs. These results indicate that vertical equipment configurations and the addition of alginates can be used to reduce cell settling in buffer based MCID testing and other applications involving large cells suspended in buffer solution.

Keywords

Cell settling Circulating tumor cell Cell separation Alginate Anti-epithelial cell adhesion molecule Microfluidics 

References

  1. A.A. Adams, P.I. Okagbare, J. Feng, M.L. Hupert, D. Patterson, J. Gottert, R.L. McCarley, D. Nikitopoulos, M.C. Murphy, S.A. Soper, J. Am. Chem. Soc. 130, 8633–8641 (2008)CrossRefGoogle Scholar
  2. M. Anand, K.R. Rajagopal, Int. J. Cardiovasc. Med. Sci 4, 59–68 (2004)Google Scholar
  3. H. Brandenberger, F. Widmer, J. Biotechnol. 63, 73–80 (1998)CrossRefGoogle Scholar
  4. K.A. Brookshier, J.M. Tarbell, Biorheology 30, 107–116 (1993)Google Scholar
  5. P. Cabrales, A.G. Tsai, M. Intaglietta, Shock 22, 431–437 (2004)CrossRefGoogle Scholar
  6. P. Cabrales, A.G. Tsai, M. Intaglietta, Am. J. Physiol. Heart Circ. Physiol. 288, H1708–1716 (2005)CrossRefGoogle Scholar
  7. Y.I. Cho, K.R. Kensey, Biorheology 28, 241–262 (1991)Google Scholar
  8. U. Dharmasiri, S. Balamurugan, A.A. Adams, P.I. Okagbare, A. Obubuafo, S.A. Soper, Electrophoresis 30, 3289–3300 (2009)CrossRefGoogle Scholar
  9. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)CrossRefGoogle Scholar
  10. J.P. Gleghorn, E.P. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Lab Chip 10, 27–29 (2010)CrossRefGoogle Scholar
  11. G.P. Gupta, J. Massague, Cell 127, 679–695 (2006)CrossRefGoogle Scholar
  12. M.A. Johnson, J.M. Ross, Ann. Biomed. Eng. 36, 349–355 (2008)CrossRefGoogle Scholar
  13. M.R. King, L.T. Western, K. Rana, J.L. Liesveld, J. Bionic Eng. 6, 311–317 (2009)CrossRefGoogle Scholar
  14. S.H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1994)Google Scholar
  15. A.M. Leshansky, A. Bransky, N. Korin, U. Dinnar, Phys. Rev. Lett. 98, 234501 (2007)CrossRefGoogle Scholar
  16. M. Lopez, M.D. Graham, Phys. Fluids 20, 053304 (2008)CrossRefGoogle Scholar
  17. J.H. Myung, C.A. Launiere, D.T. Eddington, S. Hong, Langmuir 26, 8589–8596 (2010)CrossRefGoogle Scholar
  18. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–1239 (2007)CrossRefGoogle Scholar
  19. K. Pantel, R.H. Brakenhoff, B. Brandt, Nat. Rev. Cancer 8, 329–340 (2008)CrossRefGoogle Scholar
  20. S. Riethdorf, H. Fritsche, V. Muller, T. Rau, C. Schindlbeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Janicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Clin. Cancer Res. 13, 920–928 (2007)CrossRefGoogle Scholar
  21. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, PNAS, 107, 43, 18392–18397 (2010)Google Scholar
  22. A.H. Talasaz, A.A. Powell, D.E. Huber, J.G. Berbee, K.-H. Roh, W. Yu, W. Xiao, M.M. Davis, R.F. Pease, M.N. Mindrinos, S.S. Jeffrey, R.W. Davis, Proc. Natl. Acad. Sci. U. S. A. 106, 3970–3975 (2009)CrossRefGoogle Scholar
  23. S.J. Tan, L. Yobas, G.Y. Lee, C.N. Ong, C.T. Lim, Biomed Microdevices 11, 883–892 (2009)CrossRefGoogle Scholar
  24. P. Tanguy, L. Choplin, M. Fortin, Can. J. Chem. Eng 63, 533–538 (1985)CrossRefGoogle Scholar
  25. G.B. Thurston, N.M. Henderson, Biorheology 43, 729–746 (2006)Google Scholar
  26. P. Vauchel, A. Arhaliass, J. Legrand, R. Kaas, R. Baron, J. Phycol. 44, 515–517 (2008)CrossRefGoogle Scholar
  27. S.E. Weigum, P.N. Floriano, N. Christodoulides, J.T. McDevitt, Lab. Chip 7, 995–1003 (2007)CrossRefGoogle Scholar
  28. Z. Wu, K. Hjort, G. Wicher, Å. Fex Svenningsen, Biomed. Microdevices 10, 631–638 (2008)CrossRefGoogle Scholar
  29. Y. Xu, J.A. Phillips, J. Yan, Q. Li, Z.H. Fan, W. Tan, Anal. Chem. 81, 7436–7442 (2009)CrossRefGoogle Scholar
  30. Z. Yu, A. Wachs, Y. Peysson, J. Non-Newtonian Fluid Mech 136, 126–139 (2006)CrossRefMATHGoogle Scholar
  31. S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R.J. Cote, Y.C. Tai, J. Chromatogr. A 1162, 154–161 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cari A. Launiere
    • 1
  • Gregory J. Czaplewski
    • 1
  • Ja Hye Myung
    • 2
  • Seungpyo Hong
    • 1
    • 2
  • David T. Eddington
    • 1
    • 2
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biopharmaceutical SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations