Biomedical Microdevices

, Volume 13, Issue 3, pp 539–548 | Cite as

A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology

  • Yandong Gao
  • Devi Majumdar
  • Bojana Jovanovic
  • Candice Shaifer
  • P. Charles Lin
  • Andries Zijlstra
  • Donna J. Webb
  • Deyu Li


A versatile microfluidic platform allowing co-culture of multiple cell populations in close proximity with separate control of their microenvironments would be extremely valuable for many biological applications. Here, we report a simple and compact microfluidic platform that has these desirable features and allows for real-time, live-cell imaging of cell-cell interactions. Using a pneumatically/hydraulically controlled poly(dimethylsiloxane) (PDMS) valve barrier, distinct cell types can be cultured in side-by-side microfluidic chambers with their optimum culture media and treated separately without affecting the other cell population. The platform is capable of both two-dimensional and three-dimensional cell co-culture and through variations of the valve barrier design, the platform allows for cell-cell interactions through either direct cell contact or soluble factors alone. The platform has been used to perform dynamic imaging of synapse formation in hippocampal neurons by separate transfection of two groups of neurons with fluorescent pre- and post-synaptic protein markers. In addition, cross-migration of 4T1 tumor cells and endothelial cells has been studied under normoxic and hypoxic conditions, which revealed different migration patterns, suggesting the importance of the microenvironments in cell-cell interactions and biological activities.


Cell culture Cell-cell interaction Synapse formation Cell migration 


  1. S.N. Bhatia, M.L. Yarmush et al., J. Biomed. Mater. Res. 34, 189–199 (1997)CrossRefGoogle Scholar
  2. M.J. Bissell, D. Radisky, Nat. Rev. Cancer 1, 46–54 (2001)CrossRefGoogle Scholar
  3. P. Carmeliet, Y. Dor et al., Nature 394, 485–490 (1998)CrossRefGoogle Scholar
  4. H. Chen, W. Gu et al., Anal. Chem. 80, 6110–6113 (2008)CrossRefGoogle Scholar
  5. M.L. Coleman, P.J. Ratcliffe, Nat. Med. 15, 491–493 (2009)CrossRefGoogle Scholar
  6. E. Cukierman, R. Pankov et al., Science 294, 1708–1712 (2001)CrossRefGoogle Scholar
  7. P.S. Dittrich, A. Manz, Nat. Rev. Drug Discov. 5, 210–218 (2006)CrossRefGoogle Scholar
  8. D.C. Duffy, J.C. McDonald et al., Anal. Chem. 70, 4974–4984 (1998)CrossRefGoogle Scholar
  9. A. Dunaevsky, A. Tashiro et al., Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999)CrossRefGoogle Scholar
  10. J. El-Ali, P.K. Sorger et al., Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  11. J.C. Fiala, J. Spacek et al., Brain Res. Rev. 39, 29–54 (2002)CrossRefGoogle Scholar
  12. P. Friedl, K. Wolf, Nat. Rev. Cancer 3, 362–374 (2003)CrossRefGoogle Scholar
  13. A.P. Golden, J. Tien, Lab Chip 7, 720–725 (2007)CrossRefGoogle Scholar
  14. K. Goslin, H. Asmussen et al., Rat hippocampal neurons in low-density culture (MIT, Cambridge, 1998)Google Scholar
  15. N.W. Gray, R.M. Weimer et al., PLoS Biol. 4, e370 (2006)CrossRefGoogle Scholar
  16. A. Groisman, C. Lobo et al., Nat. Methods 2, 685–689 (2005)CrossRefGoogle Scholar
  17. P.G. Gross, E.P. Kartalov et al., J. Neurosci. 252, 135–143 (2007)Google Scholar
  18. E.E. Hui, S.N. Bhatia, Proc. Natl. Acad. Sci. USA 104, 5722–5726 (2007)CrossRefGoogle Scholar
  19. E. Ikeda, M.G. Achen et al., J. Biol. Chem. 270, 19761–19766 (1995)CrossRefGoogle Scholar
  20. D. Irimia, M. Toner, Lab Chip 6, 345–352 (2006)CrossRefGoogle Scholar
  21. T. Jacks, R.A. Weinberg, Cell 111, 923–925 (2002)CrossRefGoogle Scholar
  22. W.G. Kaelin Jr., Nat. Rev. Cancer 8, 865–873 (2008)CrossRefGoogle Scholar
  23. B.J. Kane, M.J. Zinner et al., Anal. Chem. 78, 4291–4298 (2006)CrossRefGoogle Scholar
  24. A. Khademhosseini, J. Yeh et al., Lab Chip 5, 1380–1386 (2005)CrossRefGoogle Scholar
  25. S.R. Khetani, S.N. Bhatia, Nat. Biotechnol. 26, 120–126 (2008)CrossRefGoogle Scholar
  26. J.Y. Kim, H. Park et al., Biomed. Microdevices 10, 11–20 (2008)CrossRefGoogle Scholar
  27. H. Kimura, T. Yamamoto et al., Lab Chip 8, 741–746 (2008)CrossRefGoogle Scholar
  28. J.N. Lee, C. Park, G. Whitesides, Anal. Chem. 75, 6544–6554 (2003)CrossRefGoogle Scholar
  29. W.B. Levy, O. Steward, Brain Res. 175, 233–245 (1979)CrossRefGoogle Scholar
  30. C.Y. Li, S. Shan et al., J. Natl. Cancer Inst. 92, 143–147 (2000)CrossRefGoogle Scholar
  31. X.H. Liu, A. Kirschenbaum et al., Clin. Exp. Metastas. 17, 687–694 (1999)CrossRefGoogle Scholar
  32. F.W. Luscinskas, S. Ma et al., Immunol. Rev. 186, 57–67 (2002)CrossRefGoogle Scholar
  33. D. Majumdar, Y. Gao, et al., J. Neurosci. Meth. 196, 38–44 (2011)Google Scholar
  34. S.J. Mandriota, M.S. Pepper, Circ. Res. 83, 852–859 (1998)Google Scholar
  35. A.M. McAllister, Annu. Rev. Neurosci. 30, 425–450 (2007)CrossRefGoogle Scholar
  36. T.C. Merker, V.I. Bondar et al., J. Polym. Sci. 38, 415–434 (2000)Google Scholar
  37. I. Meyvantsson, D.J. Beebe, Annu. Rev. Anal. Chem. 1, 423–449 (2008)CrossRefGoogle Scholar
  38. J. Narayanan, J.-Y. Xiong et al., J. Phys. Conf. Ser. 28, 4 (2006)CrossRefGoogle Scholar
  39. C.W. Pugh, P.J. Ratcliffe, Nat. Med. 9, 677–684 (2003)CrossRefGoogle Scholar
  40. S.K. Ravula, M.S. Wang et al., J. Neurosci. Meth. 159, 78–85 (2007)CrossRefGoogle Scholar
  41. M. Samoszuk, J. Tan et al., Breast Cancer Res. 7, R274–283 (2005)CrossRefGoogle Scholar
  42. D.J. Selkoe, Science 298, 789–791 (2002)CrossRefGoogle Scholar
  43. A.M. Skelley, O. Kirak et al., Nat. Methods 6, 147–152 (2009)CrossRefGoogle Scholar
  44. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977–1026 (2005)CrossRefGoogle Scholar
  45. V. Studer, G. Hang et al., J. Appl. Phys. 95, 393–398 (2004a)CrossRefGoogle Scholar
  46. V. Studer, R. Jameson et al., Microelectron. Eng. 73–74, 852–857 (2004b)CrossRefGoogle Scholar
  47. S. Takayama, J.C. McDonald et al., Proc. Natl. Acad. Sci. USA 96, 5545–5548 (1999)CrossRefGoogle Scholar
  48. M.D. Tang, A.P. Golden et al., J. Am. Chem. Soc. 125, 12988–12989 (2003)CrossRefGoogle Scholar
  49. A.M. Taylor, M. Blurton-Jones et al., Nat. Methods 2, 599–605 (2005)CrossRefGoogle Scholar
  50. A.M. Taylor, D.C. Dieterich et al., Neuron 66, 57–68 (2010)CrossRefGoogle Scholar
  51. T. Thorsen, S.J. Maerkl et al., Science 298, 580–584 (2002)CrossRefGoogle Scholar
  52. M.W. Toepke, D.J. Beebe, Lab Chip 6, 1484–1486 (2006)Google Scholar
  53. M.A. Unger, H.P. Chou et al., Science 288, 113–116 (2000)CrossRefGoogle Scholar
  54. G.M. Walker, D.J. Beebe, Lab Chip 2, 131–134 (2002)CrossRefGoogle Scholar
  55. G.M. Whitesides, E. Ostuni et al., Annu. Rev. Biomed. Eng. 3, 335–373 (2001)CrossRefGoogle Scholar
  56. J.H. Yeon, J.K. Park, Biochip J. 1, 17–27 (2007)Google Scholar
  57. Y. Yuan, G. Hilliard et al., J. Biol. Chem. 278, 15911–15916 (2003)CrossRefGoogle Scholar
  58. H. Zhang, D.J. Webb et al., J. Cell Biol. 161, 131–142 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yandong Gao
    • 1
  • Devi Majumdar
    • 2
  • Bojana Jovanovic
    • 3
  • Candice Shaifer
    • 4
  • P. Charles Lin
    • 5
  • Andries Zijlstra
    • 6
  • Donna J. Webb
    • 2
    • 3
  • Deyu Li
    • 1
  1. 1.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human DevelopmentVanderbilt UniversityNashvilleUSA
  3. 3.Department of Cancer BiologyVanderbilt UniversityNashvilleUSA
  4. 4.Department of Biochemistry and Cancer BiologyMeharry Medical CollegeNashvilleUSA
  5. 5.Center for Cancer ResearchNational Cancer InstituteFrederickUSA
  6. 6.Department of PathologyVanderbilt UniversityNashvilleUSA

Personalised recommendations