Biomedical Microdevices

, Volume 13, Issue 3, pp 517–526 | Cite as

Evaluation of transdifferentiation from mesenchymal stem cells to neuron-like cells using microfluidic patterned co-culture system

  • De-Yao Wang
  • Shinn-Chih Wu
  • Shau-Ping Lin
  • Shih-Hsiang Hsiao
  • Tze-Wen Chung
  • Yi-You Huang
Article

Abstract

We design a microfluidic patterned co-culture system for mouse mesenchymal stem cells (mMSCs) and neural cells to demonstrate the paracrine effects produced by the neural cells in facilitating the transdifferentiation from mMSCs to neuron-like cells. Neural cells and mMSC are orderly patterned in the microfluidic co-culturing system without direct cell contact. This configuration provides us to calculate the percentage of neural marker transdifferentiated by mMSCs easily. We obtain higher transdifferentiated ratio of mMSC in the microfluidic co-culturing system (beta III tubulin: 67%; glial fibrillary acidic protein (GFAP): 86.2%) as compared with the traditional transwell co-culturing system (beta III tubulin: 59.8%; GFAP: 52.0%), which is similar to the spontaneous neural marker expression in the undifferentiated MSCs (beta III tubulin: 47.5%; GFAP: 60.1%). Furthermore, mMSCs expressing green fluorescent protein and neural cells expressing red fluorescent protein were also used in our co-culture system to demonstrate the rarely occurring or observed cell fusion phenomenon. The results show that the co-cultured neural cells increased the transdifferentiation efficiency of mMSCs from soluble factors secreted by neural cells.

Keywords

Mesenchymal stem cell Neural cell Co-culture Micropatterning Laser manufacturing Polydimethylsiloxane 

References

  1. T. Aigner, J. Stove, Adv Drug Deliv Rev 55, 1569–1593 (2003)CrossRefGoogle Scholar
  2. A.R. Alexanian, Exp Cell Res 310, 383–391 (2005)CrossRefGoogle Scholar
  3. F. Anjos-Afonso, E.K. Siapati, D. Bonnet, J Cell Sci 117, 5655–5664 (2004)CrossRefGoogle Scholar
  4. F. Arai, A. Hirao, T. Suda, Trends Cardiovasc Med 15, 75–79 (2005)CrossRefGoogle Scholar
  5. S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, FASEB J 13, 1883–1900 (1999)Google Scholar
  6. M. Bowden, O. Geschke, J.P. Kutter, D. Diamond, Lab Chip 3, 221–223 (2003)CrossRefGoogle Scholar
  7. J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang, T.H. Young, J Micromech Microeng 15, 1147–1156 (2005)CrossRefGoogle Scholar
  8. D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, G.M. Whitesides, Proc Natl Acad Sci USA 97, 2408–2413 (2000)CrossRefGoogle Scholar
  9. M. Egerbacher, R. Krestan, P. Bock, Anat Rec 242, 471–482 (1995)CrossRefGoogle Scholar
  10. B.A. Fogarty, K.E. Heppert, T.J. Cory, K.R. Hulbutta, R.S. Martin, S.M. Lunte, Analyst 130, 924–930 (2005)CrossRefGoogle Scholar
  11. E. Fuchs, T. Tumbar, G. Guasch, Cell 116, 769–778 (2004)CrossRefGoogle Scholar
  12. H.J.G. Gundersen, E.B. Jensen, J Microsc -Oxf 147, 229–263 (1987)Google Scholar
  13. J.A. Hainfellner, T. Voigtlander, T. Strobel, P.R. Mazal, A.S. Maddalena, A. Aguzzi, H. Budka, J Neuropathol Exp Neurol 60, 449–461 (2001)Google Scholar
  14. L.A. Isakova, K. Baker, J. Dufour, D. Gaupp, D.G. Phinney, Mol Ther 13, 1173–1184 (2006)CrossRefGoogle Scholar
  15. K.K. Johe, T.G. Hazel, T. Muller, M.M. DugichDjordjevic, R.D.G. McKay, Genes Dev 10, 3129–3140 (1996)CrossRefGoogle Scholar
  16. G.C. Kopen, D.J. Prockop, D.G. Phinney, Proc Natl Acad Sci USA 96, 10711–10716 (1999)CrossRefGoogle Scholar
  17. C. Krabbe, J. Zimmer, M. Meyer, APMIS 113, 831–844 (2005)CrossRefGoogle Scholar
  18. J.Y. Lee, C. Jones, M.A. Zern, A. Revzin, Anal Chem 78, 8305–8312 (2006)CrossRefGoogle Scholar
  19. T.H. Park, M.L. Shuler, Biotechnol Prog 19, 243–253 (2003)CrossRefGoogle Scholar
  20. D.G. Phinney, D.J. Prockop, Stem Cells 25, 2896–2902 (2007)CrossRefGoogle Scholar
  21. J. Ray, F.H. Gage, Mol Cell Neurosci 31, 560–573 (2006)CrossRefGoogle Scholar
  22. J. Sanchez-Ramos, S. Song, F. Cardozo-Pelaez, C. Hazzi, T. Stedeford, A. Willing, R.W. Sands, D.J. Mooney, Curr Opin Biotechnol 18, 448–453 (2007)CrossRefGoogle Scholar
  23. S.J. Song, J. Sanzhez-Ramos, Exp Neurol 184, 54–60 (2003)CrossRefGoogle Scholar
  24. W. Tan, T.A. Desai, Tissue Eng 9, 255–267 (2003)CrossRefGoogle Scholar
  25. R.Y.L. Tsai, R.D.G. McKay, J Neurosci 20, 3725–3735 (2000)Google Scholar
  26. F.P. Wachs, S. Couillard-Despres, M. Engelhardt, D. Wilhelm, S. Ploetz, M. Vroemen, J. Kaesbauer, G. Uyanik, J. Klucken, C. Karl, J. Tebbing, C. Svendsen, N. Weidner, H.G. Kuhn, J. Winkler, L. Aigner, Lab Invest 83, 949–962 (2003)CrossRefGoogle Scholar
  27. M.J. West, L. Slomianka, H.J.G. Gundersen, Anat Rec 231, 482–497 (1991)CrossRefGoogle Scholar
  28. S. Wislet-Gendebien, G. Hans, P. Leprince, J.M. Rigo, G. Moonen, B. Rogister, Stem Cells 23, 392–402 (2005)CrossRefGoogle Scholar
  29. M.H. Yen, J.Y. Cheng, C.W. Wei, Y.C. Chuang, T.H. Young, J Micromech Microeng 16, 1143–1153 (2006)CrossRefGoogle Scholar
  30. H.M. Yu, I. Meyvantsson, I.A. Shkel, D.J. Beebe, Lab Chip 5, 1089–1095 (2005)CrossRefGoogle Scholar
  31. D.J. Yuan, S. Das, J. Appl. Phys. 101 (2007)Google Scholar
  32. B.A. Reynolds, S. Weiss, Science 255, 1707–1710 (1992)Google Scholar
  33. R.W. Sands, D.J. Mooney, Curr Opin Biotechnol 18, 448–453 (2007)Google Scholar
  34. F.S.H. Hsiao, C.C. Cheng, S.Y. Peng, H.Y. Huang, W.S. Lian, M.L. Jan, Y.T. Fang, E.C.H. Cheng, K.H. Lee, W.T.K. Cheng, S.P. Lin, S.C. Wu, Cell Prolif 43, 235–248 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • De-Yao Wang
    • 1
  • Shinn-Chih Wu
    • 2
  • Shau-Ping Lin
    • 3
  • Shih-Hsiang Hsiao
    • 2
  • Tze-Wen Chung
    • 4
  • Yi-You Huang
    • 1
  1. 1.Institute of Biomedical Engineering, College of Engineering, College of MedicineNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Department of Animal Science and Technology, College of Bio-Resources and AgricultureNational Taiwan UniversityTaipeiRepublic of China
  3. 3.Institute of Biotechnology, College of Bio-Resources and AgricultureNational Taiwan UniversityTaipeiRepublic of China
  4. 4.Department of Chemical and Material EngineeringNational Yunlin University of Science and TechnologyDou-Liu, Yun-LinRepublic of China

Personalised recommendations