Biomedical Microdevices

, Volume 13, Issue 3, pp 485–491 | Cite as

Micro-fabricated perforated polymer devices for long-term drug delivery

  • Zhuo-Jie Wu
  • Zhiquan Luo
  • Ashish Rastogia
  • Salomon Stavchansky
  • Phillip D. Bowman
  • Paul S. Ho
Article

Abstract

Fabrication techniques have been developed to produce a perforated polymer microtube as a drug delivery device. The technique consists of first forming a silicon platform with trenches and alignment marks to hold the tubes for subsequent processing. Photolithography and reactive ion etching with an inductively coupled plasma source were used to fabricate micro holes on the surface of polyimide tubes. Several materials have been used to form the etching mask, including titanium film deposited by e-beam evaporation and SiO2 and SiNx films deposited by high-density plasma chemical vapor deposition (HDPCVD). Three equidistant holes of 20 μm in diameter were fabricated on polyimide tubes (I.D. = 125 μm). The perforated tubes were loaded with ethinyl estradiol and tested for drug release in phosphate buffered saline (pH = 7.1) at 37°C. Zero order release was observed over a period of 30 days with a potential to be extended to 4 years.

Keywords

Drug delivery device Microfabrication Polymer tube Polyimide 

References

  1. R. Baker, Controlled release of biologically active agents (Wiley, New York, 1987)Google Scholar
  2. M. Bessonov, M. Koton, V. Kudryavtsev, L. Laius, Polyimides: thermally stable polymers (Consultants Bureau, New York, 1987)Google Scholar
  3. T. Desai, D. Hansford, L. Kulinsky, A. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Biomed Microdevices 2(1), 11–40 (1999)CrossRefGoogle Scholar
  4. J. Dolbow, M. Gosz, Mech Mater 23(4), 311–322 (1996)CrossRefGoogle Scholar
  5. C. Feger, M. Khojasteh, S. Molis, Polyimides: trends in materials and applications (Society of Plastics Engineers, New York, 1996)Google Scholar
  6. V. Hatty, H. Kahn, A. Heuer, J MEMS 17(4), 943–947 (2008)Google Scholar
  7. A. Hillery, A. Lloyd, J. Swarbrick, Drug delivery and targeting for pharmacists and pharmaceutical scientists (Taylor & Francis, London, New York, 2001)Google Scholar
  8. J. Hutchinson, Z. Suo, Adv Appl Mech 29, 63–191 (1992)MATHCrossRefGoogle Scholar
  9. ITRS, International Technology Roadmap for Semiconductors (2009) Ed Lithography http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Litho.pdf
  10. B. Li, M. Kang, K. Lu, R. Huang, P. Ho, R. Allen, M. Cresswells, Nano Lett 8(1), 92–98 (2008)CrossRefGoogle Scholar
  11. J. Maloney, S. Uhland, B. Polito, N. Sheppard, C. Pelta, J. Santini, J Control Release 109(1-3F), 244–255 (2005)CrossRefGoogle Scholar
  12. F. Martin, R. Walczak, A. Boiarski, M. Cohen, T. West, C. Cosentino, M. Ferrari, J Control Release 102(1), 123–133 (2005)CrossRefGoogle Scholar
  13. M. Niwa, H. Kawakami, M. Kanno, S. Nagaoka, T. Kanamori, T. Shinbo, S. Kubota, J Biomater Sci Polym Ed 12(5), 533–542 (2001)CrossRefGoogle Scholar
  14. M. Ohring, The materials science of thin films: deposition and structure (Academic Press, San Diego, 2002)Google Scholar
  15. A. Rastogi, Z. Luo, Z .Wu, P. Ho, P. Bowman, S. Stavchansky, Biomed Microdevices 12(5), 915–921, (2010)Google Scholar
  16. J. Robinson, V. Lee, Controlled drug delivery: fundamentals and applications (Marcel Dekker, New York, 1987)Google Scholar
  17. P. Rousche, D. Pellinen, D. Pivin, J. Williams, R. Vetter, D. Kirke, IEEE Trans Biomed Eng 48(3), 361–371 (2001)CrossRefGoogle Scholar
  18. J. Santini, M. Cima, R. Langer, Nature 397(6717), 335–338 (1999)CrossRefGoogle Scholar
  19. J. Santini Jr., A. Richards, R. Scheidt, M. Cima, R. Langer, Angew Chem Int Ed 39(14), 2396–2407 (2000)CrossRefGoogle Scholar
  20. T. Tang, S. Smith, B. Flynn, J. Stevenson, A. Gundlach, H. Reekie, A. Murray, D. Renshaw, B. Dhillon, A. Ohtori, IET Nanobiotechnol 2(3), 72 (2008)CrossRefGoogle Scholar
  21. T. Tsui, A. McKerrow, J. Vlassak, J Mater Res 20(9), 2266 (2005)CrossRefGoogle Scholar
  22. G. Voskerician, M. Shive, R. Shawgo, H. Recum, J. Anderson, M. Cima, R. Langer, Biomaterials 24(11), 1959–1967 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhuo-Jie Wu
    • 1
  • Zhiquan Luo
    • 1
  • Ashish Rastogia
    • 2
    • 3
  • Salomon Stavchansky
    • 2
  • Phillip D. Bowman
    • 3
  • Paul S. Ho
    • 1
  1. 1.Microelectronics Research CenterThe University of Texas at AustinAustinUSA
  2. 2.Division of Pharmaceutics, College of PharmacyThe University of Texas at AustinAustinUSA
  3. 3.U.S. Army Institute of Surgical ResearchSan AntonioUSA

Personalised recommendations