Biomedical Microdevices

, Volume 13, Issue 3, pp 463–473 | Cite as

Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity

  • Johannes R. Peham
  • Walter Grienauer
  • Hannes Steiner
  • Rudolf Heer
  • Michael J. Vellekoop
  • Christa Nöhammer
  • Herbert Wiesinger-Mayr


In this article we present a long target droplet polymerase chain reaction (PCR) microsystem for the amplification of the 16S ribosomal RNA gene. It is used for detecting Gram-positive and Gram-negative pathogens at high-throughput and is optimised for downstream species identification. The miniaturised device consists of three heating plates for denaturation, annealing and extension arranged to form a triangular prism. Around this prism a fluoropolymeric tubing is coiled, which represents the reactor. The source DNA was thermally isolated from bacterial cells without any purification, which proved the robustness of the system. Long target sequences up to 1.3 kbp from Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa have successfully been amplified, which is crucial for the successive species classification with DNA microarrays at high accuracy. In addition to the kilobase amplicon, detection limits down to DNA concentrations equivalent to 102 bacterial cells per reaction were achieved, which qualifies the microfluidic device for clinical applications. PCR efficiency could be increased up to 2-fold and the total processing time was accelerated 3-fold in comparison to a conventional thermocycler. Besides this speed-up, the device operates in continuous mode with consecutive droplets, offering a maximal throughput of 80 samples per hour in a single reactor. Therefore we have overcome the trade-off between target length, sensitivity and throughput, existing in present literature. This qualifies the device for the application in species identification by PCR and microarray technology with high sample numbers. Moreover early diagnosis of infectious diseases can be implemented, allowing immediate species specific antibiotic treatment. Finally this can improve patient convalescence significantly.


Long target High throughput Microfluidic Polymerase chain reaction Pathogen detection Bacteria 


  1. D. Chen, M. Mauk, X. Qiu, C. Liu, J. Kim, S. Ramprasad, S. Ongagna, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed. Microdevices 12(4), 705–719 (2010). doi:10.1007/s10544-010-9423-4 CrossRefGoogle Scholar
  2. J. Chen, M. Wabuyele, H. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, S. Soper, Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal. Chem. 77(2), 658–666 (2005). doi:10.1021/ac048758e CrossRefGoogle Scholar
  3. L.J. Chien, J.H. Wang, T.M. Hsieh, P.H. Chen, P.J. Chen, D.S. Lee, C.H. Luo, G.B. Lee, A micro circulating PCR chip using a suction-type membrane for fluidic transport. Biomed. Microdevices 11(2), 359–367 (2009). doi:10.1007/s10544-008-9242-z CrossRefGoogle Scholar
  4. Z. Chunsun, X. Jinliang, W. Jianqin, W. Hanping, Experimental study of continuous-flow polymerase chain reaction microfluidics based on polytetrafluoroethylene capillary. Chin. J. Anal. Chem. 34(8), 1197–1202 (2006)CrossRefGoogle Scholar
  5. N. Crews, T. Ameel, C. Wittwer, B. Gale, Flow-induced thermal effects on spatial DNA melting. Lab Chip 8(11), 1922–1929 (2008). doi:10.1039/b807034b CrossRefGoogle Scholar
  6. M. Curcio, J. Roeraade, Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal. Chem. 75(1), 1–7 (2003). doi:10.1021/ac0204146 CrossRefGoogle Scholar
  7. K. Dorfman, M. Chabert, J. Codarbox, G. Rousseau, P. de Cremoux, J. Viovy, Contamination free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications. Anal. Chem. 77(11), 3700–3704 (2005). doi:10.1021/ac050031i CrossRefGoogle Scholar
  8. W. Dunn, S. Jacobson, L. Waters, N. Kroutchinina, J. Khandurina, R. Foote, M. Justice, L. Stubbs, J. Ramsey, PCR amplification and analysis of simple sequence length polymorphisms in mouse DNA using a single microchip device. Anal. Biochem. 277(1), 157–160 (2000)CrossRefGoogle Scholar
  9. N. Friedman, D. Meldrum, Capillary tube resistive thermal cycling. Anal. Chem. 70(14), 2997–3002 (1998)CrossRefGoogle Scholar
  10. T. Fukuba, T. Yamamoto, T. Naganuma, T. Fujii, Microfabricated flow-through device for DNA amplification—towards in situ gene analysis. Chem. Eng. J. 101(1–3), 151–156 (2004). doi:10.1016/j.cej.2003.11.016. 7th International Conference on Microreaction Technology (IMRET 7), Lausanne, Switzerland, Sep 2003CrossRefGoogle Scholar
  11. R. Hartung, A. Broesing, G. Sczcepankiewicz, U. Liebert, N. Haefner, M. Duerst, J. Felbel, D. Lassner, J.M. Koehler, Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR. Biomed. Microdevices 11(3), 685–692 (2009). doi:10.1007/s10544-008-9280-6 CrossRefGoogle Scholar
  12. M. Hashimoto, P. Chen, M. Mitchell, D. Nikitopoulos, S. Soper, M. Murphy, Rapid PCR in a continuous flow device. Lab Chip 4(6), 638–645 (2004). doi:10.1039/b406860b CrossRefGoogle Scholar
  13. J. Kim, J. Lee, S. Seong, S. Cha, S. Lee, J. Kim, T. Park, Fabrication and characterization of a PDMS-glass hybrid continuous-flow PCR chip. Biochem. Eng. J. 29(1–2), 91–97 (2006). doi:10.1016/j.bej.2005.02.032. 10th Symposium of the Young-Asian-Biochemical-Engineers-Community (YABEC), Osaka City, Japan, 23-25 Sep 2004CrossRefGoogle Scholar
  14. E. Lagally, P. Simpson, R. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system. Sens. Actuators B Chem. 63(3), 138–146 (2000)CrossRefGoogle Scholar
  15. Y. Li, D. Xing, C. Zhang, Rapid detection of genetically modified organisms on a continuous-flow polymerase chain reaction microfluidics. Anal. Biochem. 385(1), 42–49 (2009). doi:10.1016/j.ab.2008.10.028 CrossRefGoogle Scholar
  16. W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Forster, I. Brettske, S. Gerber, A. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. Konig, T. Liss, R. Lussmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, K. Schleifer, ARB: a software environment for sequence data. Nucleic Acids Res. 32(4), 1363–1371 (2004). doi:10.1093/nar/gkh293 CrossRefGoogle Scholar
  17. M. Mahalanabis, J. Do, H. ALMuayad, J.Y. Zhang, C.M. Klapperich, An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed. Microdevices 12(2), 353–359 (2010). doi:10.1007/s10544-009-9391-8 CrossRefGoogle Scholar
  18. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, H. Erlich, Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51(Pt 1), 263–273 (1986). [PubMed:3472723]Google Scholar
  19. P. Obeid, T. Christopoulos, H. Crabtree, C. Backhouse, Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75(2), 288–295 (2003). doi:10.1021/ac0260239 CrossRefGoogle Scholar
  20. N. Pamme, Continuous flow separations in microfluidic devices. Lab Chip 7(12), 1644–1659 (2007). doi:10.1039/b712784g CrossRefGoogle Scholar
  21. N. Panaro, X. Lou, P. Fortina, L. Kricka, P. Wilding, Surface effects on PCR reactions in multichip microfluidic platforms. Biomed. Microdevices 6(1), 75–80 (2004)CrossRefGoogle Scholar
  22. N. Park, S. Kim, J. Hahn, Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal. Chem. 75(21), 6029–6033 (2003). doi:10.1021/ac0346959 CrossRefGoogle Scholar
  23. I. Pjescic, C. Tranter, P.L. Hindmarsh, N.D. Crews, Glass-composite prototyping for flow PCR with in situ DNA analysis. Biomed. Microdevices 12(2), 333–343 (2010). doi:10.1007/s10544-009-9389-2 CrossRefGoogle Scholar
  24. N. Ramalingam, H.B. Liu, C.C. Dai, Y. Jiang, H. Wang, Q. Wang, K.M. Hui, H.Q. Gong, Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed. Microdevices 11(5), 1007–1020 (2009). doi:10.1007/s10544-009-9318-4 CrossRefGoogle Scholar
  25. W. Rasband, ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA (1997–2009), Google Scholar
  26. A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin, A. Sharon, Low cost and manufacturable complete microTAS for detecting bacteria. Lab Chip 9(19), 2803–2810 (2009). doi:10.1039/b904854e CrossRefGoogle Scholar
  27. I. Schneegass, R. Brautigam, J. Kohler, Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1(1), 42–49 (2001). doi:10.1039/b103846j CrossRefGoogle Scholar
  28. K. Sun, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens. Actuators B Chem. 84(2–3), 283–289 (2002)CrossRefGoogle Scholar
  29. F. Wang, M.A. Burns, Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed. Microdevices 11(5), 1071–1080 (2009). doi:10.1007/s10544-009-9324-6 CrossRefGoogle Scholar
  30. N. Wellinghausen, B. Wirths, A. Franz, L. Karolyi, R. Marre, U. Reischl, Algorithm for the identification of bacterial pathogens in positive blood cultures by real-time LightCycler polymerase chain reaction (PCR) with sequence-specific probes. Diagn. Microbiol. Infect. Dis. 48(4), 229–241 (2004). doi:10.1016/j.diagmicrobio.2003.11.005 CrossRefGoogle Scholar
  31. N. Wellinghausen, A.J. Kochem, C. Disque, H. Muehl, S. Gebert, J. Winter, J. Matten, S.G. Sakka, Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J. Clin. Microbiol. 47(9), 2759–2765 (2009). doi:10.1128/JCM.00567-09 CrossRefGoogle Scholar
  32. H. Wiesinger-Mayr, K. Vierlinger, R. Pichler, A. Kriegner, A.M. Hirschl, E. Presterl, L. Bodrossy, C. Noehammer, Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC Microbiol. 7 (2007). doi:10.1186/1471-2180-7-78
  33. X. Yu, M. Susa, C. Knabbe, R. Schmid, T. Bachmann, Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J. Clin. Microbiol. 42(9), 4083–4091 (2004). doi:10.1128/JCM.42.9.4083-4091.2004 CrossRefGoogle Scholar
  34. C. Zhang, D. Xing, Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res. 35(13), 4223–4237 (2007). doi:10.1093/nar/gkm389 CrossRefGoogle Scholar
  35. C. Zhang, D. Xing, Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification. Biomed. Microdevices 12(1), 1–12 (2010). doi:10.1007/s10544-009-9352-2 MATHCrossRefGoogle Scholar
  36. C. Zhang, J. Xu, W. Ma, W. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24(3), 243–284 (2006). doi:10.1016/j.biotechadv.2005.10.002 CrossRefGoogle Scholar
  37. Y. Zhang, P. Ozdemir, Microfluidic DNA amplification-A review. Anal. Chim. Acta 638(2), 115–125 (2009). doi:10.1016/j.aca.2009.02.038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johannes R. Peham
    • 1
  • Walter Grienauer
    • 2
  • Hannes Steiner
    • 2
  • Rudolf Heer
    • 1
  • Michael J. Vellekoop
    • 3
  • Christa Nöhammer
    • 1
  • Herbert Wiesinger-Mayr
    • 1
  1. 1.Health & Environment DepartmentAIT Austrian Institute of TechnologyWienAustria
  2. 2.Aerospace and Advanced Composites GmbHSeibersdorfAustria
  3. 3.Institute of Sensor and Actuator SystemsVienna University of TechnologyWienAustria

Personalised recommendations