Skip to main content

Novel multi-sided, microelectrode arrays for implantable neural applications

Abstract

A new parylene-based microfabrication process is presented for neural recording and drug delivery applications. We introduce a large design space for electrode placement and structural flexibility with a six mask process. By using chemical mechanical polishing, electrode sites may be created top-side, back-side, or on the edge of the device having three exposed sides. Added surface area was achieved on the exposed edge through electroplating. Poly(3,4-ethylenedioxythiophene) (PEDOT) modified edge electrodes having an 85-μm2 footprint resulted in an impedance of 200 kΩ at 1 kHz. Edge electrodes were able to successfully record single unit activity in acute animal studies. A finite element model of planar and edge electrodes relative to neuron position reveals that edge electrodes should be beneficial for increasing the volume of tissue being sampled in recording applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5
Fig. 6
Fig. 7

References

  • M.R. Abidian, D.C. Martin, Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes. Biomaterials 29(9), 1273–1283 (2008)

    Article  Google Scholar 

  • D.J. Anderson, K.G. Oweiss, et al. (2001). Sensor arrays in the micro-environment of the brain. Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on Salt Lake City, UT, USA

  • G. Buzsaki, Large-scale recording of neuronal ensembles. Nat. Neurosci. 7(5), 446–451 (2004)

    Article  Google Scholar 

  • H.-Y. Chen, A.A. McClelland et al., Solventless adhesive bonding using reactive polymer coatings. Anal. Chem. 80(11), 4119–4124 (2008)

    Article  Google Scholar 

  • K.C. Cheung, Implantable microscale neural interfaces. Biomed. Microdevices 9(6), 923–938 (2007)

    Article  Google Scholar 

  • C.-C. Chiang, M.-C. Chen et al., Physical and barrier properties of plasma-enhanced chemical vapor deposited -SiC:H films from trimethylsilane and tetramethylsilane. Jpn J. Appl. Phys. 1 Regular Pap. Short Notes Rev. Pap. 42(Compendex), 4273–4277 (2003)

    Google Scholar 

  • S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  • S.F. Cogan, D.J. Edell et al., Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J. Biomed. Mater. Res. A 67(Compendex), 856–867 (2003)

    Article  Google Scholar 

  • X. Cui, D.C. Martin, Electrochemical deposition and characterization of poly(3, 4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators, B B89(1–2), 92–102 (2003)

    Article  Google Scholar 

  • J.P. Donoghue, A. Nurmikko et al., Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J. Physiol. 579(Pt 3), 603–611 (2007)

    Article  Google Scholar 

  • W.F. Gorham, A New General Synthetic Method for Preparation of Linear Poly-P-Xylylenes. J. Polym. Sci. Part 1 Polym. Chem. 4(12PA), 3027-& (1966)

    Google Scholar 

  • H. Haug, Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am. J. Anat. 180(2), 126–142 (1987)

    Article  Google Scholar 

  • K. Hyoung-Gyun, A. Yoo-Min et al., Effect of chemicals and slurry particles on chemical mechanical polishing of polyimide. Jpn. J. Appl. Phys., Part 1 (Regular Papers, Short Notes & Review Papers) 39(Copyright 2000, IEE), 1085–1090 (2000)

    Google Scholar 

  • X. Jun, Y. Xing et al., Surface micromachined leakage proof Parylene check valve (IEEE, Piscataway, 2001)

    Google Scholar 

  • S. Kim, R. Bhandari et al., Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices (2008)

  • D.R. Kipke, W. Shain et al., Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28(46), 11830–11838 (2008)

    Article  Google Scholar 

  • D. Klee, N. Weiss et al., Vapor-Based Polymerization of Functionalized [2.2]Paracyclophanes: A Unique Approach Towards Surface-Engineered Microenvironments. Modern Cyclophane Chemistry. (Weinheim, Wiley-VCH, 2004): p.463

  • J. Lahann, D. Klee et al., Chemical vapour deposition polymerization of substituted [2.2]paracyclophanes. Macromol. Rapid Commun. 19(9), 441–445 (1998)

    Article  Google Scholar 

  • E.R. Lewis, Using electronic circuits to model simple neuroelectric interactions. Proc. IEEE 56(6), 931–949 (1968)

    Article  Google Scholar 

  • J.S. Lewis, M.S. Weaver, Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 10(Copyright 2004, IEE), 45-57 (2004)

    Google Scholar 

  • W. Li, D. Rodger et al., Integrated Flexible Ocular Coil for Power and Data Transfer in Retinal Prostheses. Conf Proc IEEE Eng Med Biol Soc 1(1), 1028–1031 (2005)

    Google Scholar 

  • G.E. Loeb, M.J. Bak et al., Parylene as a Chronically Stable, Reproducible Microelectrode Insulator. IEEE Trans. Biomed. Eng. 24(2), 121–128 (1977)

    Article  Google Scholar 

  • N.K. Logothetis, C. Kayser et al., In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55(5), 809–823 (2007)

    Article  Google Scholar 

  • K.A. Ludwig, R. Miriani et al. Employing a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays. J. Neurophysiol. (2008)

  • K.A. Ludwig, J.D. Uram et al., Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3, 4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3(1), 59–70 (2006)

    Article  Google Scholar 

  • J.U. Meyer, T. Stieglitz et al., High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans. Adv. Packag. 24(3), 366–374 (2001)

    Article  Google Scholar 

  • M.A. Moffitt, C.C. McIntyre, Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 116(9), 2240–2250 (2005)

    Article  Google Scholar 

  • H. Nandivada, H.Y. Chen et al., Vapor-based synthesis of poly [(4-formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications. Macromol. Rapid Commun. 26(22), 1794–1799 (2005)

    Article  Google Scholar 

  • D.P. Papageorgiou, S.E. Shore et al., A shuttered neural probe with on-chip flowmeters for chronic in vivo drug delivery. J. Microelectromechanical Syst. 15(4), 1025–1033 (2006)

    Article  Google Scholar 

  • E. Pierstorff, R. Lam et al., Nanoscale architectural tuning of parylene patch devices to control therapeutic release rates. Nanotechnology 19(44), 445104 (2008)

    Article  Google Scholar 

  • N. Pornsin-Sirirak, M. Liger et al., Flexible parylene-valved skin for adaptive flow control (IEEE, Piscataway, 2002)

    Google Scholar 

  • E. Purcell, J. Seymour et al. In vivo evaluation of a neural stem cell-seeded probe. Journal of Neural Engineering (In Press) (2009)

  • R. Rafaela Fernanda Carvalhal, F. Sanches, T.K. Lauro, Polycrystalline Gold Electrodes: A Comparative Study of Pretreatment Procedures Used for Cleaning and Thiol Self-Assembly Monolayer Formation. Electroanalysis 17(14), 1251–1259 (2005)

    Article  Google Scholar 

  • R. Redd, M.A. Spak et al. Lithographic process for high-resolution metal lift-off, SPIE (1999)

  • J. Riera, T. Ogawa et al., Concurrent observations of astrocytic Ca(2+) activity and multisite extracellular potentials from an intact cerebral cortex. J Biophotonics (2009)

  • E.M. Robinson, R. Lam et al., Localized therapeutic release via an amine-functionalized poly-p-xylene microfilm device. J. Phys. Chem. B 112(37), 11451–11455 (2008)

    Article  Google Scholar 

  • D.C. Rodger, Y.C. Tai, Microelectronic packaging for retinal prostheses. IEEE Eng. Med. Biol. Mag. 24(5), 52–57 (2005)

    Article  Google Scholar 

  • J.P. Seymour, Y.M. Elkasabi et al., The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 30(31), 6158–6167 (2009)

    Article  Google Scholar 

  • J.P. Seymour, D.R. Kipke, Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)

    Article  Google Scholar 

  • A.K. Sharma, H. Yasuda, Effect of glow discharge treatment of substrates on parylene-substrate adhesion. J. Vacuum Sci. Technol. 21(4), 994–998 (1982)

    Article  Google Scholar 

  • N.F. Sheppard, D.R. Day et al., Microdielectrometry. Sensors Actuators 2(3), 263–274 (1982)

    Google Scholar 

  • A.J. Spence, K.B. Neeves et al., Flexible multielectrodes can resolve multiple muscles in an insect appendage. J. Neurosci. Meth. 159(1), 116–124 (2007)

    Article  Google Scholar 

  • W.C. Stacey, B. Litt, Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nat. Clin. Pract. Neurol. 4(4), 190–201 (2008)

    Google Scholar 

  • S. Takeuchi, D. Ziegler et al., Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5), 519–523 (2005)

    Article  Google Scholar 

  • E.P.M. van Westing, G.M. Ferrari et al., Determination of coating performance using electrochemical impedance spectroscopy. Electrochim. Acta 39(7), 899–910 (1994)

    Article  Google Scholar 

  • R.J. Vetter, J.C. Williams et al., Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng. 51(6), 896–904 (2004)

    Article  Google Scholar 

  • M.S. Weaver, L.A. Michalski et al. Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl. Phys. Lett. 81(Copyright 2002, IEE), 2929-2931 (2002)

    Google Scholar 

  • K.D. Wise, Silicon microsystems for neuroscience and neural prostheses. IEEE Eng. Med. Biol. Mag. 24(5), 22–29 (2005)

    Article  Google Scholar 

  • K.D. Wise, A.M. Sodagar et al., Microelectrodes, microelectronics, and implantable neural microsystems. Proc. IEEE 96(7), 1184–1202 (2008)

    Article  Google Scholar 

  • D.S. Wuu, W.C. Lo et al., Plasma-deposited silicon oxide barrier films on polyethersulfone substrates: temperature and thickness effects. Surf. Coat. Technol. 197(Copyright 2006, IEE), 253-259 (2005)

    Google Scholar 

  • G.R. Yang, Y.P. Zhao et al., Chemical-mechanical polishing of parylene N and benzocyclobutene films. J. Electrochem. Soc. 144(9), 3249–3255 (1997)

    Article  Google Scholar 

  • Y. Yang, S. Basu et al., Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Biomaterials 26(15), 2585–2594 (2005)

    Article  Google Scholar 

  • H. Yasuda, B.H. Chun et al., Interface-engineered parylene C coating for corrosion protection of cold-rolled steel. Corrosion 52(3), 169–176 (1996)

    Article  Google Scholar 

  • H. Yasuda, Q.S. Yu et al., Interfacial factors in corrosion protection: an EIS study of model systems. Prog. Org. Coat. 41(4), 273–279 (2001)

    Article  Google Scholar 

  • J. Zeng, A. Aigner et al., Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6(3), 1484–1488 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Joerg Lahann and Dr. Yaseen Elkasabi for providing the reactive parylene dimer and for conducting the CVD polymerization in their laboratory. Ning Gulari provided the critical idea of using CMP in this process and other helpful conversations. Drs. Pilar Herrera-Fierro, Hung-Chin Guthrie, and Ramin Emami shared their considerable CMP expertise which was vitally important. Dr. Kip Ludwig shared his method and software for automatic neural spike sorting. Dr. Mohammad Abidian and Eugene Daneshvar engaged in many helpful discussions regarding conductive polymers. We gratefully acknowledge support from the NIH P41 Center for Neural Communication Technology (EB002030) through the NIBIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Seymour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Electric potential slices and geometries from a three-dimensional COMSOL 4.0a model for each combination of neuron position and electrode type. Electric potential (V) shown in xy-plane cutting through the electrode. (a) Planar electrode. (b) Thin edge electrode, 0.5 μm thick. (c) Thick edge electrode, 5.0 μm thick. (JPEG 423 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seymour, J.P., Langhals, N.B., Anderson, D.J. et al. Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdevices 13, 441–451 (2011). https://doi.org/10.1007/s10544-011-9512-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9512-z

Keywords

  • Neural recording
  • Microelectrode array
  • Parylene
  • Neural prostheses
  • Drug delivery
  • Chemical mechanical polishing