Biomedical Microdevices

, Volume 13, Issue 3, pp 415–430 | Cite as

Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays

  • Song-Bin Huang
  • Min-Hsien Wu
  • Shih-Siou Wang
  • Gwo-Bin Lee


This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr−1 without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is economical and time efficient. All of these traits are particularly useful for high-precision and high-throughput 3-D cell culture-based assays.


Microfluidics Micropumps Microbioreactors Perfusion cell culture 3-D cell culture 

Supplementary material

10544_2011_9510_MOESM1_ESM.mpg (617 kb)
ESM 1(MPG 617 kb)
10544_2011_9510_MOESM2_ESM.mpg (3.6 mb)
ESM 2(MPG 3701 kb)


  1. A. Abbott, Nature 424, 870 (2003)CrossRefGoogle Scholar
  2. H. Baharvand, S.M. Hashemi, S.K. Ashtiani, A. Farrokhi, Int. J. Dev. Biol. 50, 645 (2006)MATHCrossRefGoogle Scholar
  3. P.D. Benya, J.D. Shaffer, Cell 30, 215 (1982)CrossRefGoogle Scholar
  4. N.N. Boustany, M.L. Gray, A.C. Black, E.B. Hunziker, J. Orthop. Res. 13, 733 (1995)CrossRefGoogle Scholar
  5. K. Boxshall, M.H. Wu, Z. Cui, Z.F. Cui, J.F. Watts, M.A. Baker, Surf. Interface Anal. 38, 198 (2006)CrossRefGoogle Scholar
  6. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Science 294, 1708 (2001)CrossRefGoogle Scholar
  7. E. Cukierman, R. Pankov, K.M. Yamada, Curr. Opin. Cell Biol. 14, 633 (2002)CrossRefGoogle Scholar
  8. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403 (2006)CrossRefGoogle Scholar
  9. A.M. Freyria, M.C. Ronziere, S. Roche, C.F. Rousseau, D. Herbage, J. Cell. Biochem. 76, 84 (1999)CrossRefGoogle Scholar
  10. M.L. Gray, A.M. Pizzanelli, A.J. Grodzinsky, R.C. Lee, J. Orthop. Res. 6, 777 (1988)CrossRefGoogle Scholar
  11. L.H. He, L.H. Lim, B.S. Wu, Int. J. Solids Struct. 41, 847 (2004)CrossRefGoogle Scholar
  12. C.D. Hoemann, J. Sun, V. Chrzanowski, M.D.A. Buschmann, Anal. Biochem. 300, 1 (2002)CrossRefGoogle Scholar
  13. C.W. Huang, S.B. Huang, G.B. Lee, J. Micromech. Microeng. 16, 2265 (2006)MATHCrossRefGoogle Scholar
  14. S.B. Huang, M.H. Wu, Z.F. Cui, Z. Cui, G.B. Lee, J. Micromech. Microeng. 18, 045008 (2008)CrossRefGoogle Scholar
  15. D.J. Laser, J.G. Santiago, J. Micromech. Microeng. 14, 35 (2004)CrossRefGoogle Scholar
  16. R.B. Lee, J.P.G. Urban, Biochem. J. 321, 95 (1997)Google Scholar
  17. J. Lii, W.J. Hsu, H. Parsa, A. Das, R. Rouse, S.K. Sia, Anal. Chem. 80, 3640 (2008)CrossRefGoogle Scholar
  18. J.L. Lin, M.H. Wu, C.Y. Kuo, K.D. Lee, Y.L. Shen, Biomed. Microdevices 12, 389 (2010)CrossRefGoogle Scholar
  19. T.J. Maguire, E. Novik, P. Chao, J. Barminko, Y. Nahmias, M.L. Yarmush, K.C. Cheng, Curr. Drug Metab. 10, 1192 (2009)CrossRefGoogle Scholar
  20. A. Shamloo, N. Ma, M.M. Poo, L.L. Sohn, S.C. Heilshorn, Lab Chip 8, 1292 (2008)CrossRefGoogle Scholar
  21. M. Sittinger, O. Schultz, G. Keyszer, W.W. Minuth, G.R. Burmester, Int. J. Artif. Organs 20, 57 (1997)Google Scholar
  22. A.I. Suárez, K. Chavez, E. Mateu, R.S. Compagnone, A. Muñoz, F. Sojo, F. Arvelo, M. Mijares, J.B. De Sanctis, Nat. Prod. Commun. 4, 1547 (2009)Google Scholar
  23. S. Sugiura, J. Edahiro, K. Kikuchi, K. Sumaru, T. Kanamori, Biotechnol. Bioeng. 100, 1156 (2008)CrossRefGoogle Scholar
  24. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 100, 1484 (2003)CrossRefGoogle Scholar
  25. A. Tirella, M. Marano, F. Vozzi, A. Ahluwalia, Toxicol. In Vitro 22, 1957 (2008)CrossRefGoogle Scholar
  26. Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, H.R. Yu, Lab Chip 7, 302 (2007)CrossRefGoogle Scholar
  27. Y.C. Toh, T.C. Lim, D. Tai, G.F. Xiao, D. van Noort, H.R. Yu, Lab Chip 14, 2026 (2009)CrossRefGoogle Scholar
  28. Y. Torisawa, H. Shiku, T. Yasukawa, M. Nishizawa, T. Matsue, Sens. Actuators, B, Chem. 108, 654 (2005)CrossRefGoogle Scholar
  29. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 5, 14 (2005)CrossRefGoogle Scholar
  30. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)CrossRefGoogle Scholar
  31. G.M. Walker, H.C. Zeringue, D.J. Beebe, Lab Chip 4, 91 (2004)CrossRefGoogle Scholar
  32. C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21, 419 (2005)MATHCrossRefGoogle Scholar
  33. M.H. Wu, Surf. Interface Anal. 41, 11 (2009)CrossRefGoogle Scholar
  34. M.H. Wu, J.P.G. Urban, Z. Cui, Z.F. Cui, Biomed. Microdevices 8, 331 (2006)CrossRefGoogle Scholar
  35. M.H. Wu, J.P.G. Urban, Z.F. Cui, Z. Cui, X. Xu, Biotechnol. Prog. 23, 430 (2007)CrossRefGoogle Scholar
  36. M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui, G.B. Lee, Sens. Actuators, B, Chem. 129, 231 (2008a)CrossRefGoogle Scholar
  37. M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui, G.B. Lee, Biomed. Microdevices 10, 309 (2008b)CrossRefGoogle Scholar
  38. M.H. Wu, S.B. Huang, G.B. Lee, Lab Chip 10, 939 (2010)CrossRefGoogle Scholar
  39. X. Xu, J.P.G. Urban, U. Tirlapur, M.H. Wu, Z. Cui, Z.F. Cui, Biotechnol. Bioeng. 93, 1103 (2006)CrossRefGoogle Scholar
  40. Y.N. Yang, S.K. Hsiung, G.B. Lee, Microfluid. Nanofluid. 6, 823 (2009)CrossRefGoogle Scholar
  41. N.N. Ye, J.H. Qin, W.W. Shi, X. Liu, B.C. Lin, Lab Chip 7, 1696 (2007)CrossRefGoogle Scholar
  42. K. Ziolkowska, E. Jedrych, R. Kwapiszewski, J. Lopacinska, M. Skolimowski, M. Chudy, Sens. Actuators, B, Chem. 145, 533 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Song-Bin Huang
    • 1
  • Min-Hsien Wu
    • 2
  • Shih-Siou Wang
    • 2
  • Gwo-Bin Lee
    • 3
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Graduate Institute of Biochemical and Biomedical EngineeringChang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations