Skip to main content
Log in

Forces affecting double-stranded DNA translocation through synthetic nanopores

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

One of the recent applications of nanopores is to use them as detectors/analyzers for bio-molecules and nanopore based sequencing has been studied to quickly sequence DNA. In this paper, three categories of forces proposed in the literature to oppose the electrical driving forces in the DNA translocation process are analyzed, (1) the entropic forces of DNA uncoiling/recoiling at the pore entrance/exits, (2) the viscous drag acting on the blob like DNA outside the nanopore, and (3) the viscous drag acting on the linear DNA inside the nanopore. The magnitudes of these forces are calculated based on the parameters used in experiments and it is shown that the first two of the aforementioned categories of forces are usually small compared to the electrical driving force, while the last one is of the same order as the electrical driving force. To evaluate the viscous drag force acting on the linear DNA inside the nanopore, a hydrodynamic model based on the lubrication approximation is used to calculate the flow field and the viscous drag force acting on a DNA immobilized in a nanopore. This model is validated by good agreement with the experimental data for the tethering force used to immobilize a DNA inside the nanopore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • H. Bayley, C.R. Martin, Resistive-pulse sensings from microbes to molecules. Chem. Rev. 100, 2575–2594 (2000)

    Article  Google Scholar 

  • C. Bustamante, Z. Bryant, S.B. Smith, Ten years of tension: single-molecule dna mechanics. Nature 421, 423–427 (2003)

    Article  Google Scholar 

  • C. Calladine, H. Drew, in Understanding DNA (Academic Press, 1992)

  • L. Chen, A.T. Conlisk, Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Biomedical Microdevices 10, 289–298 (2008)

    Article  Google Scholar 

  • L. Chen, A.T. Conlisk, Dna nanowire translocation phenomena in nanopores. Biomed. Microdevices 12(2), 235–245 (2010)

    Article  Google Scholar 

  • J. Dutcher, A.G. Marangoni, Soft Materials: Structural and Dynamics (CRC Press, 2004)

  • C. Forrey, M. Muthukumara, Langevin dynamics simulations of ds-dna translocation through synthetic nanopores. J. Chem. Phys. 127, 015102 (2007)

    Article  Google Scholar 

  • M.G. Fyta, S. Melchionna, E. Kaxiras, S. Succi, Multiscale coupling of molecular dynamics and hydrodynamics: application to dna translocation through a nanopore. Multiscale Model. Simul. 5(4), 1156–1173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Ghosal, Effect of salt concentration on the electrophoretic speed of a polyelectrolyte through a nanopore. Phys. Rev. Lett. 98, 238104 (2007)

    Article  Google Scholar 

  • F.H.J. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005)

    Article  Google Scholar 

  • Y. Kantor, M. Kardar, Anomalous dynamics of forced translocation. Phys. Rev. E 69, 021806 (2004)

    Article  Google Scholar 

  • U.F. Keyser, B.N. Koeleman, S.V. Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Direct forcemeasurements on dna in a solid-state nanopore. Nat. Phys. 2, 473–477 (2006)

    Article  Google Scholar 

  • L.I. Klushin, A.M. Skvortsov, H.P. Hsu, K. Binder, Dragging a polymer chain into a nanotube and subsequent release. Macromolecules 18(15), 5890–5898 (2008)

    Article  Google Scholar 

  • J. Li, D. Stein, C. McMullan, D. Branton, M.J. Aziz, J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001)

    Article  Google Scholar 

  • Meller, Voltage-driven dna translocations through a nanopore. Phys. Rev. Lett. 86(15), 3435–3438 (2001)

    Article  Google Scholar 

  • M. Muthukumar, Polymer translocation through a hole. J. Chem. Phys. 111(12), 10371–10374 (1999)

    Article  Google Scholar 

  • M. Muthukumar, Mechanism of dna transport through pores. Annu. Rev. Biophys. Biomol. Struct. 36, 435–450 (2007)

    Article  Google Scholar 

  • T. Odijk, Ten years of tension: single-molecule dna mechanics. Macromolecules 16(8), 1340–1344 (1983)

    Article  Google Scholar 

  • P. Prinsen, L.T. Fang, A.M. Yoffe, C.M. Knobler, W.M. Gelbart, The force acting on a polymer partially confined in a tube. J. Phys. Chem. B 113(12), 3873–3879 (2009)

    Article  Google Scholar 

  • R.M.M. Smeets, U.F. Keyser, D. Krapf, M.Y. Wu, N.H. Dekker, C. Dekker, Salt dependence of ion transport and dna translocation through solid-state nanopores. Nano Lett. 6(1), 89–95 (2006)

    Article  Google Scholar 

  • A.J. Storm, J.H. Chen, H.W. Zandbergen, C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540 (2003)

    Article  Google Scholar 

  • A.J. Storm, J.H. Chen, H.W. Zandbergen, C. Dekker, Translocation of double-strand dna through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005a)

    Article  Google Scholar 

  • A.J. Storm, C. Storm, J. Chen, H. Zandbergen, J.F. Joanny, C. Dekker, Fast dna translocation through a solid-state nanopore. Nano. Lett. 5(7), 1193–1197 (2005b)

    Article  Google Scholar 

  • S. van Dorp, U.F. Keyser, N.H. Dekker, C. Dekker, S.G. Lemay, Origin of the electrophoretic force on dna in solid-state nanopores. Nat. Phys. 5, 347–351 (2009)

    Article  Google Scholar 

  • W. Zhu, S.J. Singer, Z. Zheng, A.T. Conlisk, Electro-osmotic flow of a model electrolyte. Phys. Rev. E 71, 041501–1–041501–12 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support of this work from National Science Foundation (NSF) Nanoscale Science and Engineering Center (NSEC), Center for Affordable Nanoengineering of Polymeric Biomedical Devices (CANPBD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Conlisk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Conlisk, A.T. Forces affecting double-stranded DNA translocation through synthetic nanopores. Biomed Microdevices 13, 403–414 (2011). https://doi.org/10.1007/s10544-011-9509-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9509-7

Keywords

Navigation