Skip to main content
Log in

In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The goal of this study was to verify that a fully implanted microelectrode with modulated surface may have a reduced rising rate of total impedance and a longer life time. In the previous work, alkanethiolate self-assembled monolayers (SAMs) surface as protein-resistant spacer or cell-repulsive dense-packed spacer has been verified from in vitro experiments. In this study, microelectrodes with the same surface modulation were implanted into the subcutaneous layers of Wistar rats. Nine rats were implanted with the microelectrodes and the total impedance data were measured every 24 h for 2 weeks after implantation. An equivalent electrical circuit model of the electrode-tissue interface was established and parameters were estimated by using an optimization algorithm. Four out of nine rats had manifested acute inflammation reaction and the rests revealed only slight tissue response. Histological examination for the inflammatory group showed fibroblasts, macrophages, and polymorphonuclear leukocytes in adjacent to the electrode contact surface. In the inflammatory group, no significantly difference in total impedance was found in both types of electrodes. However, the trend of total impedance of SAMs-treated electrodes could maintain a steady state value after 1 week. For the non-inflammatory group, both types of electrodes could reduce the impedance value within implanted days. The tissue resistance might be related to the thickness of cells adhered upon the electrode contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • M.S. Ju, H.C. Chien, G.S. Chen, C.C.K. Lin, C.H. Chang, C.W. Chang, Med Biol Eng 22, 33–40 (2002)

    Google Scholar 

  • P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kirke, IEEE Trans Biomed Eng 48, 361–371 (2001)

    Article  Google Scholar 

  • S. Peeters, L. Van Immerseel, A. Zarowski, V. Houben, P. Govaerts, E. Offeciers, Acta Otorhinolaryngol Belg 52, 115–127 (1998)

    Google Scholar 

  • R.B. Stein, D. Charles, T. Gordon, J.A. Hoffer, J. Jhamandas, IEEE Trans Biomed Eng 25, 532–537 (1978)

    Article  Google Scholar 

  • F.A. Spelman, B.M. Clopton, B.E. Pfingst, Ann Otol Rhinol Laryngol 91, 3–8 (1982)

    Google Scholar 

  • M. Mrksich, G.M. Whitesides, Annu Rev Biophys Biomol Struct 25, 55–78 (1996)

    Article  Google Scholar 

  • C. Jung, O. Dannenberger, M. Buck, M. Gruuze, Langmuir 14, 1103–1107 (1998)

    Article  Google Scholar 

  • Y. Nam, J.C. Chang, B.C. Wheeler, G.J. Brewer, IEEE Trans Biomed Eng 51, 158–165 (2004)

    Article  Google Scholar 

  • C.H. Chang, J.D. Liao, J.J. Jason Chen, M.S. Ju, C.C.K. Lin, Langmuir 20, 11656–11663 (2004)

    Article  Google Scholar 

  • C.H. Chang, J.D. Liao, J.J. Jason Chen, M.S. Ju, C.C.K. Lin, Nanotechnology 17, 2449–2457 (2006)

    Article  Google Scholar 

  • A. Weerasuriya, R.A. Spanglar, S.I. Rapoport, R.E. Taylor, Biophys J 46, 167–174 (1984)

    Article  Google Scholar 

  • S.J. Dorgan, R.B. Reilly, IEEE Trans Rehabil Eng 7, 341–348 (1999)

    Article  Google Scholar 

  • A. Lackermeier, A. Pirke, E.T. McAdams, Proc 18th Annu Intl Conf IEEE Eng Med Biol Soc 5, 1945–1946 (1996)

    Article  Google Scholar 

  • D.K. Peterson, M.L. Nochomovitz, T.A. Stellato, J.T. Mortimer, IEEE Trans Biomed Eng 41, 1115–1126 (1994a)

    Article  Google Scholar 

  • D.K. Peterson, M.L. Nochomovitz, T.A. Stellato, J.T. Mortimer, IEEE Trans Biomed Eng 41, 1127–1135 (1994b)

    Article  Google Scholar 

  • W.M. Grill, J.T. Mortimer, IEEE Trans Rehabil Eng 6, 364–373 (1998)

    Article  Google Scholar 

  • J.J. Struijk, M. Thomsen, J.O. Larsen, T. Sinkjær, IEEE Eng Med Biol Mag 18, 91–98 (1999)

    Article  Google Scholar 

  • W. Jensen, K. Yoshida, U.G. Hofmann, IEEE Trans Biomed Eng 53, 934–940 (2006)

    Article  Google Scholar 

  • B.D. Schmit, J.T. Mortimer, IEEE Trans Biomed Eng 44, 921–930 (1997)

    Article  Google Scholar 

  • A. Rosengren, N. Danielsen, L.M. Bjursten, Biomaterials 18, 979–987 (1997)

    Article  Google Scholar 

  • A. Rosengren, L. Wallman, N. Danielsen, T. Laurell, L.M. Bjursten, IEEE Trans Biomed Eng 49, 392–399 (2002)

    Article  Google Scholar 

  • B.J. Woodford, R.R. Carter, D. McCreery, L.A. Bullara, W.F. Agnew, J. Neuropathol, Exp Neurol 55, 982–991 (1996)

    Google Scholar 

  • J.M. Anderson, ASAIO Trans 34, 101–107 (1988)

    Article  Google Scholar 

  • N. Bhadra, J.T. Mortimer, Ann Biomed Eng 34, 1042–1050 (2006)

    Article  Google Scholar 

  • Y.Z. Zhang, L.M. Bjursten, C. Freij-Larsson, M. Kober, B. Wesslen, Biomaterials 17, 2265–2272 (1996)

    Article  Google Scholar 

  • A. Branner, R.B. Stein, E. Fernandez, Y. Aoyagi, R.A. Normann, IEEE Trans Biomed Eng 51, 146–157 (2004)

    Article  Google Scholar 

  • A. Rosengren, N. Danielsen, L.M. Bjursten, J Mater Sci Mater Med 9, 415–420 (1998)

    Article  Google Scholar 

  • A. Hammadi, M. Bred, Port Electrochim Acta 25, 263–271 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Shaung Ju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, HL., Lin, CC.K., Ju, MS. et al. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers. Biomed Microdevices 13, 243–253 (2011). https://doi.org/10.1007/s10544-010-9489-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9489-z

Keywords

Navigation