Skip to main content

Advertisement

Log in

3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Detection of circulating tumor cells has emerged as a promising minimally invasive diagnostic and prognostic tool for patients with metastatic cancers. We report a novel three dimensional microfilter device that can enrich viable circulating tumor cells from blood. This device consists of two layers of parylene membrane with pores and gap precisely defined with photolithography. The positions of the pores are shifted between the top and bottom membranes. The bottom membrane supports captured cells and minimize the stress concentration on cell membrane and sustain cell viability during filtration. Viable cell capture on device was investigated with scanning electron microscopy, confocal microscopy, and immunofluorescent staining using model systems of cultured tumor cells spiked in blood or saline. The paper presents and validates this new 3D microfiltration concept for circulation tumor cell enrichment application. The device provides a highly valuable tool for assessing and characterizing viable enriched circulating tumor cells in both research and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • C. Alix-Panabieres, S. Riethdorf et al., Circulating tumor cells and bone marrow micrometastasis. Clin. Cancer Res. 14(16), 5013–5021 (2008)

    Article  Google Scholar 

  • W.J. Allard, J. Matera et al., Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10(20), 6897–6904 (2004)

    Article  Google Scholar 

  • M.K. Baker, K. Mikhitarian et al., Molecular detection of breast cancer cells in the peripheral blood of advanced-stage breast cancer patients using multimarker real-time reverse transcription-polymerase chain reaction and a novel porous barrier density gradient centrifugation technology. Clin. Cancer Res. 9(13), 4865–4871 (2003)

    Google Scholar 

  • A. Benez, A. Geiselhart et al., Detection of circulating melanoma cells by immunomagnetic cell sorting. J. Clin. Lab. Anal. 13(5), 229–233 (1999)

    Article  Google Scholar 

  • P. Boyle, B. Levin, World cancer report (WHO, Geneva, 2008)

    Google Scholar 

  • S. Braun, B. Naume, Circulating and disseminated tumor cells. J. Clin. Oncol. 23(8), 1623–1626 (2005)

    Article  Google Scholar 

  • G.T. Budd, M. Cristofanilli et al., Circulating tumor cells versus imaging—Predicting overall survival in metastatic breast cancer. Clin. Cancer Res. 12(21), 6403–6409 (2006)

    Article  Google Scholar 

  • T.Y. Chang, V.G. Yadav et al., Cell and protein compatibility of parylene-C surfaces. Langmuir 23(23), 11718–11725 (2007)

    Article  Google Scholar 

  • R.J. Cote, P.P. Rosen et al., Prediction of early relapse in patients with operable breast-cancer by detection of occult bone-marrow micrometastases. J. Clin. Oncol. 9(10), 1749–1756 (1991)

    Google Scholar 

  • M. Cristofanilli, J. Mendelsohn, Circulating tumor cells in breast cancer: advanced tools for “tailored” therapy? PNAS 103(46), 17073–17074 (2006)

    Article  Google Scholar 

  • M. Cristofanilli, G.T. Budd et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J. Med. 351(8), 781–791 (2004)

    Article  Google Scholar 

  • M. Cristofanilli, D.F. Hayes et al., Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J. Clin. Oncol. 23(7), 1420–1430 (2005)

    Article  Google Scholar 

  • I. Crnic, G. Christofori, Novel technologies and recent advances in metastasis research. Int. J. Dev. Biol. 48(5–6), 573–81 (2004)

    Article  Google Scholar 

  • S. Dawood, K. Broglio et al., Circulating tumor cells in metastatic breast cancer. Cancer 113(9), 2422–2430 (2008)

    Article  Google Scholar 

  • L. Dirix, P. Van Dam et al., Genomics and circulating tumor cells: promising tools for choosing and monitoring adjuvant therapy in patients with early breast cancer? Curr. Opin. Oncol. 17(6), 551–558 (2005)

    Article  Google Scholar 

  • E.A. Evans, R. Skalak et al., Mechanics and thermodynamics of biomembranes.1. CRC Crit. Rev. Bioeng. 3(3), 181–330 (1979)

    Google Scholar 

  • R.L. Fleischer, P.B. Price et al., Novel filter for biological materials. Science 143(3603), 249–250 (1964)

    Article  Google Scholar 

  • R.L. Fleischer, P.B. Price et al., Tracks of charged particles in solids. Science 149(3682), 383–393 (1965)

    Article  Google Scholar 

  • R.L. Fleischer, H.W. Alter et al., Particle track etching. Science 178(4058), 255–263 (1972)

    Article  Google Scholar 

  • H. Gabor, L. Weiss, Mechanically induced trauma suffered by cancer-cells in passing through pores in polycarbonate membranes. Invasion Metastasis 5(2), 71–83 (1985)

    Google Scholar 

  • G.P. Gupta, J. Massague, Cancer metastasis: building a framework. Cell 127(4), 679–695 (2006)

    Article  Google Scholar 

  • D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  • J.E. Hardingham, D. Kotasek et al., Immunobead-Pcr—A technique for the detection of circulating tumor-cells using immunomagnetic beads and the polymerase chain-reaction. Cancer Res. 53(15), 3455–3458 (1993)

    Google Scholar 

  • D.F. Hayes, J. Smerage, Is there a role for circulating tumor cells in the management of breast cancer? Clin. Cancer Res. 14(12), 3646–3650 (2008)

    Article  Google Scholar 

  • D.F. Hayes, M. Cristofanilli et al., Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12(14), 4218–4224 (2006)

    Article  Google Scholar 

  • R.W.M. Hoetelmans, F.A. Prins et al., Effects of acetone, methanol, or paraformaldehyde on cellular structure, visualized by reflection contrast microscopy and transmission and scanning electron microscopy. Appl. Immunohistochem. Mol. Morphol. 9(4), 346–351 (2001)

    Article  Google Scholar 

  • M. Hosokawa, T. Hayata et al., Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Anal. Chem. 82(15), 6629–6635 (2010)

    Article  Google Scholar 

  • H.J. Kahn, A. Presta et al., Enumeration of circulating tumor cells in the blood of breast cancer patients after filtration enrichment: correlation with disease stage. Breast Cancer Res. Treat. 86(3), 237–247 (2004)

    Article  Google Scholar 

  • R. Kwok, E. Evans, Thermoelasticity of large lecithin bilayer vesicles. Biophys. J. 35(3), 637–652 (1981)

    Article  Google Scholar 

  • O. Lara, X.D. Tong et al., Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp. Hematol. 32(10), 891–904 (2004)

    Article  Google Scholar 

  • H.K. Lin, S. Zheng et al., Portable filter-based microdevice for detection of circulating tumor cells. (2008) submitted

  • H.K. Lin, S. Zheng et al., Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. (2010) Accepted

  • S. Maheswaran, L.V. Sequist et al., Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J. Med. 359(4), 366–377 (2008)

    Article  Google Scholar 

  • S. Meng, D. Tripathy et al., uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. PNAS 103(46), 17361–17365 (2006)

    Article  Google Scholar 

  • S. Nagrath, L.V. Sequist et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173), 1235–U10 (2007)

    Article  Google Scholar 

  • K. Pantel, R.H. Brakenhoff, Dissecting the metastatic cascade. Nat. Rev. Cancer 4(6), 448–456 (2004)

    Article  Google Scholar 

  • K. Pantel, R.H. Brakenhoff et al., Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8(5), 329–340 (2008)

    Article  Google Scholar 

  • P. Pinzani, B. Salvadori et al., Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum. Pathol. 37(6), 711–718 (2006)

    Article  Google Scholar 

  • E. Racila, D. Euhus et al., Detection and characterization of carcinoma cells in the blood. Proc. Natl. Acad. Sci. U.S.A. 95(8), 4589–4594 (1998)

    Article  Google Scholar 

  • T. Reya, S.J. Morrison et al., Stem cells, cancer, and cancer stem cells. Nature 414(6859), 105–111 (2001)

    Article  Google Scholar 

  • S. Riethdorf, H. Fritsche et al., Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin. Cancer Res. 13(3), 920–928 (2007)

    Article  Google Scholar 

  • P. Rostagno, J.L. Moll et al., Detection of rare circulating breast cancer cells by filtration cytometry and identification by DNA content: sensitivity in an experimental model. Anticancer Res. 17(4A), 2481–2485 (1997)

    Google Scholar 

  • E. Sahai, Illuminating the metastatic process. Nat. Rev. Cancer 7(10), 737–749 (2007)

    Article  Google Scholar 

  • S.H. Seal, A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 17(5), 637–642 (1964)

    Article  Google Scholar 

  • J.B. Smerage, D.F. Hayes, The measurement and therapeutic implications of circulating tumour cells in breast cancer. Br. J. Cancer 94(1), 8–12 (2006)

    Article  Google Scholar 

  • P.S. Steeg, Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12(8), 895–904 (2006)

    Article  Google Scholar 

  • J. Stingl, C. Caldas, Opinion—Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat. Rev. Cancer 7(10), 791–799 (2007)

    Article  Google Scholar 

  • S. Tan, L. Yobas et al., Microdevice for the isolation and enumeration of cancer cells from blood. Biomed. Microdevices 11(4), 883–892 (2009)

    Article  Google Scholar 

  • G. Vona, A. Sabile et al., Isolation by size of epithelial tumor cells—A new method for the immunomorphological and molecular characterization of circulating tumor cells. Am. J. Pathol. 156(1), 57–63 (2000)

    Google Scholar 

  • G. Vona, C. Beroud et al., Enrichment, immunomorphological, and genetic characterization of fetal cells circulating in maternal blood. Am. J. Pathol. 160(1), 51–58 (2002)

    Google Scholar 

  • G. Vona, L. Estepa et al., Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology 39(3), 792–797 (2004)

    Article  Google Scholar 

  • R.A. Weinberg, The biology of cancer (Garland Science, Talyor & Francis Group, LLC, New York, 2007)

    Google Scholar 

  • L. Weiss, G.W. Schmidschonbein, Biomechanical interactions of cancer-cells with the microvasculature during metastasis. Cell Biophys. 14(2), 187–215 (1989)

    Google Scholar 

  • M.S. Wicha, S.L. Liu et al., Cancer stem cells: an old idea—A paradigm shift. Cancer Res. 66(4), 1883–1890 (2006)

    Article  Google Scholar 

  • L. Zabaglo, M.G. Ormerod et al., Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytom. A 55A(2), 102–108 (2003)

    Article  Google Scholar 

  • S. Zheng, H. Lin et al., Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J. Chromatogr. A 1162(2), 154–161 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

The funding of the project was provided by NIH 1R21 CA123027-01. The authors would like to thank for all the members at Caltech micromachining group and Dr. Cote’s pathology group for their valuable assistance. The authors greatly appreciate for the help from Dr. Chris Water at Caltech Biological Imaging Center on using confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyang Zheng.

Additional information

Siyang Zheng and Henry K. Lin made equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, S., Lin, H.K., Lu, B. et al. 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed Microdevices 13, 203–213 (2011). https://doi.org/10.1007/s10544-010-9485-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9485-3

Keywords

Navigation