Skip to main content
Log in

Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm × 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels. To position the collagen film on the MEMS device, a thermo-sensitive polymer was used as the sacrifice-layer which was selectively removed with O2 plasma at the positions where the collagen film was glued. The C2C12 myoblasts were seeded on the collagen film, where they proliferated and formed myotubes after induction of differentiation. When C2C12 myotubes were stimulated with electric pulses, contraction of the collagen film-C2C12 myotube complex was observed. When the edge of the Si-MEMS device was observed, displacement of ~8 μm was observed, demonstrating the possibility of locomotive movement when the device is placed on a track of adequate width. Here, we propose that the C2C12-collagen film complex is a new generation actuator for MEMS devices that utilize glucose as fuel, which will be useful in environments in which glucose is abundant such as inside a blood vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • C.M. Alves, Y. Yang, D. Marton, D.L. Carnes, J.L. Ong, V.L. Sylvia, D.D. Dean, R.L. Reis, C.M. Agrawal, J Biomed Mater Res B Appl Biomater 87(1), 59–66 (2008)

    Google Scholar 

  • R.G. Dennis, P.E. Kosnik 2nd, M.E. Gilbert, J.A. Faulkner, Am J Physiol Cell Physiol 280(2), C288–295 (2001)

    Google Scholar 

  • A. Desai, S.W. Lee, Y.C. Tai, Sens Actuators, A, Phys 73(1–2), 37–44 (1999)

    Article  Google Scholar 

  • H. Fujita, T. Nedachi, M. Kanzaki, Exp Cell Res 313(9), 1853–1865 (2007)

    Article  Google Scholar 

  • H. Fujita, K. Shimizu, E. Nagamori, Biotechnol Bioeng 103(2), 370–377 (2009a)

    Article  Google Scholar 

  • H. Fujita, K. Shimizu, E. Nagamori, Biotechnol Bioeng 103(5), 1034–1041 (2009b)

    Article  Google Scholar 

  • H. Fujita, K. Shimizu, E. Nagamori, Biotechnol Bioeng 106(3), 482–489 (2010)

    Google Scholar 

  • M.G. Garcia-Webb, A.J. Taberner, N.C. Hogan, I.W. Hunter, Am J Physiol Heart Circ Physiol 293(1), H866–874 (2007)

    Article  Google Scholar 

  • Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, T.Q. Uyeda, Biophys J 81(3), 1555–1561 (2001)

    Article  Google Scholar 

  • N.F. Huang, S. Patel, R.G. Thakar, J. Wu, B.S. Hsiao, B. Chu, R.J. Lee, S. Li, Nano Lett 6(3), 537–542 (2006)

    Article  Google Scholar 

  • G. Iribe, M. Helmes, P. Kohl, Am J Physiol Heart Circ Physiol 292(3), H1487–1497 (2007)

    Article  Google Scholar 

  • R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Biomaterials 20(23–24), 2363–2376 (1999)

    Article  Google Scholar 

  • M.T. Lam, S. Sim, X. Zhu, S. Takayama, Biomaterials 27(24), 4340–4347 (2006)

    Article  Google Scholar 

  • L. Limberis , R.J, Stewart. Nanotechnology (2), 47 (2000)

  • D.K. McMahon, P.A. Anderson, R. Nassar, J.B. Bunting, Z. Saba, A.E. Oakeley, N.N. Malouf, Am J Physiol 266(6 Pt 1), C1795–1802 (1994)

    Google Scholar 

  • D. Montarras, C. Pinset, J. Chelly, A. Kahn, F. Gros, EMBO J 8(8), 2203–2207 (1989)

    Google Scholar 

  • C. Ozcan, N. Hasirci, J Biomater Sci Polym Ed 18(6), 759–773 (2007)

    Article  Google Scholar 

  • P.H. Pham, D.V. Dao, S. Amaya, R. Kitada, S. Sugiyama, J Micromech Microeng 16(12), 2532–2538 (2006)

    Article  Google Scholar 

  • K. Shen, J.Qi, L.C. Kam, J. Vis. Exp. (22), (2008)

  • N. Shepherd, M. Vornanen, G. Isenberg, Am J Physiol 258(2 Pt 2), H452–459 (1990)

    Google Scholar 

  • K. Shimizu, H. Fujita, E. Nagamori, Biotechnol Bioeng 106(2), 303–310 (2010a)

    Google Scholar 

  • K. Shimizu, H. Sasaki, H. Hida, H. Fujita, K. Obinata, M. Shikida, E. Nagamori, Biomed Microdevices 12(2), 247–252 (2010b)

    Article  Google Scholar 

  • R.K. Soong, G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, C.D. Montemagno, Science 290(5496), 1555–1558 (2000)

    Article  Google Scholar 

  • H. Suzuki, A. Yamada, K. Oiwa, H. Nakayama, S. Mashiko, Biophys J 72(5), 1997–2001 (1997)

    Article  Google Scholar 

  • T. Takezawa, Y. Mori, K. Yoshizato, Biotechnology (N Y) 8(9), 854–856 (1990)

    Google Scholar 

  • R.B. Vernon, M.D. Gooden, S.L. Lara, T.N. Wight, Biomaterials 26(16), 3131–3140 (2005)

    Article  Google Scholar 

  • J. Xi, J.J. Schmidt, C.D. Montemagno, Nat Mater 4(2), 180–184 (2005)

    Article  Google Scholar 

  • D. Yaffe, O. Saxel, Nature 270(5639), 725–727 (1977)

    Article  Google Scholar 

  • S.I. Yasuda, S. Sugiura, N. Kobayakawa, H. Fujita, H. Yamashita, K. Katoh, Y. Saeki, H. Kaneko, Y. Suda, R. Nagai, H. Sugi, Am J Physiol Heart Circ Physiol 281(3), H1442–1446 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yuki Morioka for the excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Nagamori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Bio-MEMS device on the base was electrically stimulated at 1 Hz. Myotube contraction can be seen by phase contrast microscopy. (WMV 3538 kb)

Movement of the Bio-MEMS device by tetanus stimulation. Edge of the device before (blue) and at the end of tetanus stimulation (red) is shown in arrowheads. (WMV 762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, H., Dau, V.T., Shimizu, K. et al. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator. Biomed Microdevices 13, 123–129 (2011). https://doi.org/10.1007/s10544-010-9477-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9477-3

Keywords

Navigation