Skip to main content

Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D

Abstract

Cardiac myocytes are known to be influenced by the rigidity and topography of their physical microenvironment. It was hypothesized that 3D heterogeneity introduced by purely physical microdomains regulates cardiac myocyte size and contraction. This was tested in vitro using polymeric microstructures (G′ = 1.66 GPa) suspended with random orientation in 3D by a soft Matrigel matrix (G′ = 22.9 Pa). After 10 days of culture, the presence of 100 μm-long microstructures in 3D gels induced fold increases in neonatal rat ventricular myocyte size (1.61 ± 0.06, p < 0.01) and total protein/cell ratios (1.43 ± 0.08, p < 0.05) that were comparable to those induced chemically by 50 μM phenylephrine treatment. Upon attachment to microstructures, individual myocytes also had larger cross-sectional areas (1.57 ± 0.05, p < 0.01) and higher average rates of spontaneous contraction (2.01 ± 0.08, p < 0.01) than unattached myocytes. Furthermore, the inclusion of microstructures in myocyte-seeded gels caused significant increases in the expression of beta-1 adrenergic receptor (β1-AR, 1.19 ± 0.01), cardiac ankyrin repeat protein (CARP, 1.26 ± 0.02), and sarcoplasmic reticulum calcium-ATPase (SERCA2, 1.59 ± 0.12, p < 0.05), genes implicated in hypertrophy and contractile activity. Together, the results demonstrate that cardiac myocyte behavior can be controlled through local 3D microdomains alone. This approach of defining physical cues as independent features may help to advance the elemental design considerations for scaffolds in cardiac tissue engineering and therapeutic microdevices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

3D:

three dimensions

AraC:

cytosine β-D-arabino-furanoside

β1-AR:

beta-1 adrenergic receptor

β2M:

beta-2 microglobulin

BDM:

2,3-butanedione monoxime

BPM:

beats per minute

BSA:

bovine serum albumin

CARP:

cardiac ankyrin repeat protein

COX8H:

cytochrome c oxidase subunit VIII heart/muscle

DAPI:

4′,6-diamidino-2-phenylindole

DIC:

differential interference contrast

DMEM:

Dulbecco’s modified Eagle’s medium

DOB:

dobutamine

ECM:

extracellular matrix

PBS:

phosphate buffered saline

PE:

phenylephrine

PEGDMA:

poly(ethylene glycol) dimethacrylate

SDS:

sodium dodecyl sulfate

SEM:

standard error of measurement

SERCA2:

sarcoplasmic reticulum calcium-ATPase

References

  • Y. Aihara, M. Kurabayashi, Y. Saito, Y. Ohyama, T. Tanaka, S. Takeda, K. Tomaru, K. Sekiguchi, M. Arai, T. Nakamura, R. Nagai, Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: role of M-CAT element within the promoter. Hypertension 36, 48–53 (2000)

    Google Scholar 

  • P. Ayala, J.I. Lopez, T.A. Desai, Microtopographical cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration. Tissue Eng. Part A. (2010) [Epub ahead of print]

  • P. Bagnato, V. Barone, E. Giacomello, D. Rossi, V. Sorrentino, Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J. Cell Biol. 160, 245–253 (2003)

    Article  Google Scholar 

  • A.F. Brown, Neutrophil granulocytes: adhesion and locomotion on collagen substrata and in collagen matrices. J. Cell Sci. 58, 455–467 (1982)

    Google Scholar 

  • B.M. Cadre, M. Qi, D.M. Eble, T.R. Shannon, D.M. Bers, A.M. Samarel, Cyclic stretch down-regulates calcium transporter gene expression in neonatal rat ventricular myocytes. J. Mol. Cell. Cardiol. 30, 2247–2259 (1998)

    Article  Google Scholar 

  • C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  Google Scholar 

  • J.M. Collins, P. Ayala, T.A. Desai, B. Russell, Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells. Small 6, 355–360 (2010)

    Article  Google Scholar 

  • G. Cooper 4th, W.E. Mercer, J.K. Hoober, P.R. Gordon, R.L. Kent, I.K. Lauva, T.A. Marino, Load regulation of the properties of adult feline cardiocytes. The role of substrate adhesion. Circ. Res. 58, 692–705 (1986)

    Google Scholar 

  • J. Deutsch, D. Motlagh, B. Russell, T.A. Desai, Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 53, 267–275 (2000)

    Article  Google Scholar 

  • A.C. Durieux, D. Desplanches, D. Freyssenet, M. Flück, Mechanotransduction in striated muscle via focal adhesion kinase. Biochem. Soc. Trans. 35, 1312–1313 (2007)

    Article  Google Scholar 

  • D.M. Eble, M. Qi, S. Waldschmidt, P.A. Lucchesi, K.L. Byron, A.M. Samarel, Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am. J. Physiol. 274, C1226–C1237 (1998)

    Google Scholar 

  • A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  • A.J. Engler, C. Carag-Krieger, C.P. Johnson, M. Raab, H.Y. Tang, D.W. Speicher, J.W. Sanger, J.M. Sanger, D.E. Discher, Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121, 3794–3802 (2008)

    Article  Google Scholar 

  • A. Fraticelli, R. Josephson, R. Danziger, E. Lakatta, H. Spurgeon, Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am. J. Physiol. 257, H259–H265 (1989)

    Google Scholar 

  • N.A. Geisse, S.P. Sheehy, K.K. Parker, Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell. Dev. Biol. Anim. 45, 343–350 (2009)

    Article  Google Scholar 

  • S.M. Gopalan, C. Flaim, S.N. Bhatia, M. Hoshijima, R. Knoell, K.R. Chien, J.H. Omens, A.D. McCulloch, Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol. Bioeng. 81, 578–587 (2003)

    Article  Google Scholar 

  • M. Hoshijima, Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290, H1313–H1325 (2006)

    Article  Google Scholar 

  • H. Huang, R.D. Kamm, R.T. Lee, Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am. J. Physiol. Cell Physiol. 287, C1–C11 (2004)

    Article  Google Scholar 

  • M. Iemitsu, T. Miyauchi, S. Maeda, S. Sakai, T. Kobayashi, N. Fujii, H. Miyazaki, M. Matsuda, I. Yamaguchi, Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R2029–R2036 (2001)

    Google Scholar 

  • D.E. Ingber, Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97, 163–179 (2008)

    Article  Google Scholar 

  • J.G. Jacot, A.D. McCulloch, J.H. Omens, Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479–3487 (2008)

    Article  Google Scholar 

  • A.M. Katz, Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc. Drugs Ther. 16, 245–249 (2002)

    Article  Google Scholar 

  • P. Kim, D.H. Kim, B. Kim, S.K. Choi, S.H. Lee, A. Khademhosseini, R. Langer, K.Y. Suh, Fabrication of nanostructures of polyethylene glycol for applications to protein adsorption and cell adhesion. Nanotechnology 16, 1–7 (2005)

    Article  Google Scholar 

  • H. Kögler, P. Schott, K. Toischer, H. Milting, P.N. Van, M. Kohlhaas, C. Grebe, A. Kassner, E. Domeier, N. Teucher, T. Seidler, R. Knöll, L.S. Maier, A. El-Banayosy, R. Körfer, G. Hasenfuss, Relevance of brain natriuretic peptide in preload-dependent regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase expression. Circulation 113, 2724–2732 (2006)

    Article  Google Scholar 

  • C.J. Lee, M.S. Blumenkranz, H.A. Fishman, S.F. Bent, Controlling cell adhesion on human tissue by soft lithography. Langmuir 20, 4155–4161 (2004)

    Article  Google Scholar 

  • G.Y. Lee, P.A. Kenny, E.H. Lee, M.J. Bissell, Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007)

    Article  Google Scholar 

  • E.J. Lee, E. Kim do, E.U. Azeloglu, K.D. Costa, Engineered cardiac organoid chambers: toward a functional biological model ventricle. Tissue Eng. Part A. 14, 215–225 (2008)

    Article  Google Scholar 

  • C. Li, W. Hung Wong, Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2, 1–11 (2001)

    Google Scholar 

  • D. Motlagh, T.J. Hartman, T.A. Desai, B. Russell, Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J. Biomed. Mater. Res. A 67, 148–157 (2003a)

    Article  Google Scholar 

  • D. Motlagh, S.E. Senyo, T.A. Desai, B. Russell, Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24, 2463–2476 (2003b)

    Article  Google Scholar 

  • S.F. Nagueh, G. Shah, Y. Wu, G. Torre-Amione, N.M. King, S. Lahmers, C.C. Witt, K. Becker, S. Labeit, H.L. Granzier, Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004)

    Article  Google Scholar 

  • S. Nishimura, S. Yasuda, M. Katoh, K.P. Yamada, H. Yamashita, Y. Saeki, K. Sunagawa, R. Nagai, T. Hisada, S. Sugiura, Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am. J. Physiol. Heart Circ. Physiol. 287, H196–H202 (2004)

    Article  Google Scholar 

  • J.J. Norman, J.M. Collins, S. Sharma, B. Russell, T.A. Desai, Microstructures in 3D biological gels affect cell proliferation. Tissue Eng. A 14, 379–390 (2008)

    Article  Google Scholar 

  • E. Ogawa, Y. Saito, M. Harada, S. Kamitani, K. Kuwahara, Y. Miyamoto, M. Ishikawa, I. Hamanaka, N. Kajiyama, N. Takahashi, O. Nakagawa, I. Masuda, I. Kishimoto, K. Nakao, Outside-in signalling of fibronectin stimulates cardiomyocyte hypertrophy in cultured neonatal rat ventricular myocytes. J. Mol. Cell. Cardiol. 32, 765–776 (2000)

    Article  Google Scholar 

  • J.A. Pedersen, M.A. Swartz, Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005)

    Article  Google Scholar 

  • R.J. Pelham Jr., Y. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U. S. A. 94, 13661–13665 (1997)

    Article  Google Scholar 

  • S. Pérez, L.J. Royo, A. Astudillo, D. Escudero, F. Alvarez, A. Rodríguez, E. Gómez, J. Otero, Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors. BMC Mol. Biol. 8, 114 (2007)

    Article  Google Scholar 

  • S.R. Peyton, A.J. Putnam, Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204, 198–209 (2005)

    Article  Google Scholar 

  • A.M. Raskin, M. Hoshijima, E. Swanson, A.D. McCulloch, J.H. Omens, Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle. Mol. Cell. Biomech. 6, 145–159 (2009)

    Google Scholar 

  • S.A. Ruiz, C.S. Chen, Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921–2927 (2008)

    Article  Google Scholar 

  • B. Russell, D. Motlagh, W.W. Ashley, Form follows function: how muscle shape is regulated by work. J. Appl. Physiol. 88, 1127–1132 (2000)

    Google Scholar 

  • B. Russell, M.W. Curtis, Y.E. Koshman, A.M. Samarel, Mechanical stress-induced sarcomere assembly for cardiac muscle growth in length and width. J. Mol. Cell. Cardiol. 48, 817–823 (2010)

    Article  Google Scholar 

  • A. Saez, M. Ghibaudo, A. Buguin, P. Silberzan, B. Ladoux, Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. U. S. A. 104, 8281–8286 (2007)

    Article  Google Scholar 

  • A.M. Samarel, Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am. J. Physiol. Heart Circ. Physiol. 289, H2291–H2301 (2005)

    Article  Google Scholar 

  • S.E. Senyo, Y.E. Koshman, B. Russell, Stimulus interval, rate and direction differentially regulate phosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett. 581, 4241–4247 (2007)

    Article  Google Scholar 

  • K. Shapira-Schweitzer, D. Seliktar, Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater. 3, 33–41 (2007)

    Article  Google Scholar 

  • C.C. Strøm, M. Kruhøffer, S. Knudsen, F. Stensgaard-Hansen, T.E. Jonassen, T.F. Orntoft, S. Haunsø, S.P. Sheikh, Identification of a core set of genes that signifies pathways underlying cardiac hypertrophy. Comp. Funct. Genomics 5, 459–470 (2004)

    Article  Google Scholar 

  • S.L. Tao, K.C. Popat, J.J. Norman, T.A. Desai, Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties. Langmuir 24, 2631–2636 (2008)

    Article  Google Scholar 

  • R.G. Thakar, M.G. Chown, A. Patel, L. Peng, S. Kumar, T.A. Desai, Contractility-dependent modulation of cell proliferation and adhesion by microscale topographical cues. Small 4, 1416–1424 (2008)

    Article  Google Scholar 

  • E.W. Thompson, T.A. Marino, C.E. Uboh, R.L. Kent, G. Cooper 4th, Atrophy reversal and cardiocyte redifferentiation in reloaded cat myocardium. Circ. Res. 54, 367–377 (1984)

    Google Scholar 

  • N. Wang, J.P. Butler, D.E. Ingber, Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993)

    Article  Google Scholar 

  • Y.C. Wang, C.C. Ho, Micropatterning of proteins and mammalian cells on biomaterials. FASEB J. 18, 525–527 (2004)

    Google Scholar 

  • J. Weisser-Thomas, H. Kubo, C.A. Hefner, J.P. Gaughan, B.S. McGowan, R. Ross, M. Meyer, W. Dillmann, S.R. Houser, The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes. J. Card. Fail. 11, 380–387 (2005)

    Article  Google Scholar 

  • S.H. Witt, D. Labeit, H. Granzier, S. Labeit, C.C. Witt, Dimerization of the cardiac ankyrin protein CARP: implications for MARP titin-based signaling. J. Muscle Res. Cell Motil. 26, 401–408 (2005)

    Article  Google Scholar 

  • W.H. Zimmermann, K. Schneiderbanger, P. Schubert, M. Didié, F. Münzel, J.F. Heubach, S. Kostin, W.L. Neuhuber, T. Eschenhagen, Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230 (2002)

    Article  Google Scholar 

  • O. Zolk, M. Frohme, A. Maurer, F.W. Kluxen, B. Hentsch, D. Zubakov, J.D. Hoheisel, I.H. Zucker, S. Pepe, T. Eschenhagen, Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem. Biophys. Res. Commun. 293, 1377–1382 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Perla Ayala at the University of California at San Francisco for her ongoing help in fabricating microstructures. This work was supported by the National Institutes of Health grants T32 HL007692, PO1 HL62426, and RO1 HL090523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Russell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Curtis, M.W., Sharma, S., Desai, T.A. et al. Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D. Biomed Microdevices 12, 1073–1085 (2010). https://doi.org/10.1007/s10544-010-9461-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9461-y

Keywords

  • Cardiomyocyte
  • Beat frequency
  • Cell remodeling
  • Focal adhesion
  • Mechanotransduction
  • Microstructure
  • Microenvironment
  • Three dimensions
  • Hypertrophy
  • Spontaneous contraction